561 lines
192 KiB
Plaintext
561 lines
192 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Simplified MPC 简化MPC\n",
|
|
"\n",
|
|
"Checking the implementation from [Reuben Ferrante](https://github.com/arex18/rocket-lander)\n",
|
|
"参考[Reuben Ferrante]的实现 \n",
|
|
"\n",
|
|
"Here the system dynamics matrices are evaluated only once given the current state, input -> So no more need to keep track of **x_bar** and **u_bar**.\n",
|
|
"此处系统动力学矩阵仅在给定当前状态和输入时评估一次->因此不再需要跟踪**x_bar**和**u_bar**。\n",
|
|
"\n",
|
|
"This should give less precise results but the computation time should be gratly reduced and the overall code is slimmer, worth checking out!\n",
|
|
"这应该给出不太精确的结果,但计算时间应该大大减少,整体代码更简洁,值得一试!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-10-23T09:14:29.961291Z",
|
|
"start_time": "2024-10-23T09:14:29.224486Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import cvxpy as opt\n",
|
|
"import time\n",
|
|
"from scipy.integrate import odeint\n",
|
|
"from scipy.interpolate import interp1d\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"plt.style.use(\"ggplot\")\n",
|
|
"\n",
|
|
"N = 4 # number of state variables\n",
|
|
"M = 2 # number of control variables\n",
|
|
"T = 10 # Prediction Horizon\n",
|
|
"DT = 0.2 # discretization step\n",
|
|
"\n",
|
|
"L = 0.3 # vehicle wheelbase\n",
|
|
"MAX_SPEED = 1.5 # m/s\n",
|
|
"MAX_ACC = 1.0 # m/ss\n",
|
|
"MAX_D_ACC = 1.0 # m/sss\n",
|
|
"MAX_STEER = np.radians(30) # rad\n",
|
|
"MAX_D_STEER = np.radians(30) # rad/s\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_linear_model_matrices(x_bar, u_bar):\n",
|
|
" \"\"\"\n",
|
|
" Computes the LTI approximated state space model x' = Ax + Bu + C\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" x = x_bar[0]\n",
|
|
" y = x_bar[1]\n",
|
|
" v = x_bar[2]\n",
|
|
" theta = x_bar[3]\n",
|
|
"\n",
|
|
" a = u_bar[0]\n",
|
|
" delta = u_bar[1]\n",
|
|
"\n",
|
|
" ct = np.cos(theta)\n",
|
|
" st = np.sin(theta)\n",
|
|
" cd = np.cos(delta)\n",
|
|
" td = np.tan(delta)\n",
|
|
"\n",
|
|
" A = np.zeros((N, N))\n",
|
|
" A[0, 2] = ct\n",
|
|
" A[0, 3] = -v * st\n",
|
|
" A[1, 2] = st\n",
|
|
" A[1, 3] = v * ct\n",
|
|
" A[3, 2] = v * td / L\n",
|
|
" A_lin = np.eye(N) + DT * A\n",
|
|
"\n",
|
|
" B = np.zeros((N, M))\n",
|
|
" B[2, 0] = 1\n",
|
|
" B[3, 1] = v / (L * cd**2)\n",
|
|
" B_lin = DT * B\n",
|
|
"\n",
|
|
" f_xu = np.array([v * ct, v * st, a, v * td / L]).reshape(N, 1)\n",
|
|
" C_lin = DT * (\n",
|
|
" f_xu - np.dot(A, x_bar.reshape(N, 1)) - np.dot(B, u_bar.reshape(M, 1))\n",
|
|
" ) # .flatten()\n",
|
|
"\n",
|
|
" # return np.round(A_lin,6), np.round(B_lin,6), np.round(C_lin,6)\n",
|
|
" return A_lin, B_lin, C_lin\n",
|
|
"\n",
|
|
"\n",
|
|
"class MPC:\n",
|
|
" def __init__(self, N, M, Q, R):\n",
|
|
" \"\"\" \"\"\"\n",
|
|
" self.state_len = N\n",
|
|
" self.action_len = M\n",
|
|
" self.state_cost = Q\n",
|
|
" self.action_cost = R\n",
|
|
"\n",
|
|
" def optimize_linearized_model(\n",
|
|
" self,\n",
|
|
" A,\n",
|
|
" B,\n",
|
|
" C,\n",
|
|
" initial_state,\n",
|
|
" target,\n",
|
|
" time_horizon=10,\n",
|
|
" Q=None,\n",
|
|
" R=None,\n",
|
|
" verbose=False,\n",
|
|
" ):\n",
|
|
" \"\"\"\n",
|
|
" Optimisation problem defined for the linearised model,\n",
|
|
" :param A:\n",
|
|
" :param B:\n",
|
|
" :param C:\n",
|
|
" :param initial_state:\n",
|
|
" :param Q:\n",
|
|
" :param R:\n",
|
|
" :param target:\n",
|
|
" :param time_horizon:\n",
|
|
" :param verbose:\n",
|
|
" :return:\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" assert len(initial_state) == self.state_len\n",
|
|
"\n",
|
|
" if Q == None or R == None:\n",
|
|
" Q = self.state_cost\n",
|
|
" R = self.action_cost\n",
|
|
"\n",
|
|
" # Create variables\n",
|
|
" x = opt.Variable((self.state_len, time_horizon + 1), name=\"states\")\n",
|
|
" u = opt.Variable((self.action_len, time_horizon), name=\"actions\")\n",
|
|
"\n",
|
|
" # Loop through the entire time_horizon and append costs\n",
|
|
" cost_function = []\n",
|
|
"\n",
|
|
" for t in range(time_horizon):\n",
|
|
"\n",
|
|
" _cost = opt.quad_form(target[:, t + 1] - x[:, t + 1], Q) + opt.quad_form(\n",
|
|
" u[:, t], R\n",
|
|
" )\n",
|
|
"\n",
|
|
" _constraints = [\n",
|
|
" x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C,\n",
|
|
" u[0, t] >= -MAX_ACC,\n",
|
|
" u[0, t] <= MAX_ACC,\n",
|
|
" u[1, t] >= -MAX_STEER,\n",
|
|
" u[1, t] <= MAX_STEER,\n",
|
|
" ]\n",
|
|
" # opt.norm(target[:, t + 1] - x[:, t + 1], 1) <= 0.1]\n",
|
|
"\n",
|
|
" # Actuation rate of change\n",
|
|
" if t < (time_horizon - 1):\n",
|
|
" _cost += opt.quad_form(u[:, t + 1] - u[:, t], R * 1)\n",
|
|
" _constraints += [opt.abs(u[0, t + 1] - u[0, t]) / DT <= MAX_D_ACC]\n",
|
|
" _constraints += [opt.abs(u[1, t + 1] - u[1, t]) / DT <= MAX_D_STEER]\n",
|
|
"\n",
|
|
" if t == 0:\n",
|
|
" # _constraints += [opt.norm(target[:, time_horizon] - x[:, time_horizon], 1) <= 0.01,\n",
|
|
" # x[:, 0] == initial_state]\n",
|
|
" _constraints += [x[:, 0] == initial_state]\n",
|
|
"\n",
|
|
" cost_function.append(\n",
|
|
" opt.Problem(opt.Minimize(_cost), constraints=_constraints)\n",
|
|
" )\n",
|
|
"\n",
|
|
" # Add final cost\n",
|
|
" problem = sum(cost_function)\n",
|
|
"\n",
|
|
" # Minimize Problem\n",
|
|
" problem.solve(verbose=verbose, solver=opt.OSQP)\n",
|
|
" return x, u"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"jupyter": {
|
|
"source_hidden": true
|
|
},
|
|
"ExecuteTime": {
|
|
"end_time": "2024-10-23T09:14:34.623754Z",
|
|
"start_time": "2024-10-23T09:14:34.622136Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"\"\"\"\n",
|
|
"the ODE is used to update the simulation given the mpc results\n",
|
|
"I use this insted of using the LTI twice\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\n",
|
|
"def kinematics_model(x, t, u):\n",
|
|
" \"\"\"\n",
|
|
" Returns the set of ODE of the vehicle model.\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" L = 0.3 # vehicle wheelbase\n",
|
|
" dxdt = x[2] * np.cos(x[3])\n",
|
|
" dydt = x[2] * np.sin(x[3])\n",
|
|
" dvdt = u[0]\n",
|
|
" dthetadt = x[2] * np.tan(u[1]) / L\n",
|
|
"\n",
|
|
" dqdt = [dxdt, dydt, dvdt, dthetadt]\n",
|
|
"\n",
|
|
" return dqdt\n",
|
|
"\n",
|
|
"\n",
|
|
"def predict(x0, u):\n",
|
|
" \"\"\" \"\"\"\n",
|
|
"\n",
|
|
" x_ = np.zeros((N, T + 1))\n",
|
|
"\n",
|
|
" x_[:, 0] = x0\n",
|
|
"\n",
|
|
" # solve ODE\n",
|
|
" for t in range(1, T + 1):\n",
|
|
"\n",
|
|
" tspan = [0, DT]\n",
|
|
" x_next = odeint(kinematics_model, x0, tspan, args=(u[:, t - 1],))\n",
|
|
"\n",
|
|
" x0 = x_next[1]\n",
|
|
" x_[:, t] = x_next[1]\n",
|
|
"\n",
|
|
" return x_\n",
|
|
"\n",
|
|
"\n",
|
|
"\"\"\"\n",
|
|
"MODIFIED TO INCLUDE FRAME TRANSFORMATION\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\n",
|
|
"def compute_path_from_wp(start_xp, start_yp, step=0.1):\n",
|
|
" \"\"\"\n",
|
|
" Computes a reference path given a set of waypoints\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" final_xp = []\n",
|
|
" final_yp = []\n",
|
|
" delta = step # [m]\n",
|
|
"\n",
|
|
" for idx in range(len(start_xp) - 1):\n",
|
|
" section_len = np.sum(\n",
|
|
" np.sqrt(\n",
|
|
" np.power(np.diff(start_xp[idx : idx + 2]), 2)\n",
|
|
" + np.power(np.diff(start_yp[idx : idx + 2]), 2)\n",
|
|
" )\n",
|
|
" )\n",
|
|
"\n",
|
|
" interp_range = np.linspace(0, 1, np.floor(section_len / delta).astype(int))\n",
|
|
"\n",
|
|
" fx = interp1d(np.linspace(0, 1, 2), start_xp[idx : idx + 2], kind=1)\n",
|
|
" fy = interp1d(np.linspace(0, 1, 2), start_yp[idx : idx + 2], kind=1)\n",
|
|
"\n",
|
|
" # watch out to duplicate points!\n",
|
|
" final_xp = np.append(final_xp, fx(interp_range)[1:])\n",
|
|
" final_yp = np.append(final_yp, fy(interp_range)[1:])\n",
|
|
"\n",
|
|
" dx = np.append(0, np.diff(final_xp))\n",
|
|
" dy = np.append(0, np.diff(final_yp))\n",
|
|
" theta = np.arctan2(dy, dx)\n",
|
|
"\n",
|
|
" return np.vstack((final_xp, final_yp, theta))\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_nn_idx(state, path):\n",
|
|
" \"\"\"\n",
|
|
" Computes the index of the waypoint closest to vehicle\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" dx = state[0] - path[0, :]\n",
|
|
" dy = state[1] - path[1, :]\n",
|
|
" dist = np.hypot(dx, dy)\n",
|
|
" nn_idx = np.argmin(dist)\n",
|
|
"\n",
|
|
" try:\n",
|
|
" v = [\n",
|
|
" path[0, nn_idx + 1] - path[0, nn_idx],\n",
|
|
" path[1, nn_idx + 1] - path[1, nn_idx],\n",
|
|
" ]\n",
|
|
" v /= np.linalg.norm(v)\n",
|
|
"\n",
|
|
" d = [path[0, nn_idx] - state[0], path[1, nn_idx] - state[1]]\n",
|
|
"\n",
|
|
" if np.dot(d, v) > 0:\n",
|
|
" target_idx = nn_idx\n",
|
|
" else:\n",
|
|
" target_idx = nn_idx + 1\n",
|
|
"\n",
|
|
" except IndexError as e:\n",
|
|
" target_idx = nn_idx\n",
|
|
"\n",
|
|
" return target_idx\n",
|
|
"\n",
|
|
"\n",
|
|
"def normalize_angle(angle):\n",
|
|
" \"\"\"\n",
|
|
" Normalize an angle to [-pi, pi]\n",
|
|
" \"\"\"\n",
|
|
" while angle > np.pi:\n",
|
|
" angle -= 2.0 * np.pi\n",
|
|
"\n",
|
|
" while angle < -np.pi:\n",
|
|
" angle += 2.0 * np.pi\n",
|
|
"\n",
|
|
" return angle\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_ref_trajectory(state, path, target_v):\n",
|
|
" \"\"\"\n",
|
|
" For each step in the time horizon\n",
|
|
" modified reference in robot frame\n",
|
|
" \"\"\"\n",
|
|
" xref = np.zeros((N, T + 1))\n",
|
|
" dref = np.zeros((1, T + 1))\n",
|
|
"\n",
|
|
" # sp = np.ones((1,T +1))*target_v #speed profile\n",
|
|
"\n",
|
|
" ncourse = path.shape[1]\n",
|
|
"\n",
|
|
" ind = get_nn_idx(state, path)\n",
|
|
" dx = path[0, ind] - state[0]\n",
|
|
" dy = path[1, ind] - state[1]\n",
|
|
"\n",
|
|
" xref[0, 0] = dx * np.cos(-state[3]) - dy * np.sin(-state[3]) # X\n",
|
|
" xref[1, 0] = dy * np.cos(-state[3]) + dx * np.sin(-state[3]) # Y\n",
|
|
" xref[2, 0] = target_v # V\n",
|
|
" xref[3, 0] = normalize_angle(path[2, ind] - state[3]) # Theta\n",
|
|
" dref[0, 0] = 0.0 # steer operational point should be 0\n",
|
|
"\n",
|
|
" dl = 0.05 # Waypoints spacing [m]\n",
|
|
" travel = 0.0\n",
|
|
"\n",
|
|
" for i in range(1, T + 1):\n",
|
|
" travel += abs(target_v) * DT # current V or target V?\n",
|
|
" dind = int(round(travel / dl))\n",
|
|
"\n",
|
|
" if (ind + dind) < ncourse:\n",
|
|
" dx = path[0, ind + dind] - state[0]\n",
|
|
" dy = path[1, ind + dind] - state[1]\n",
|
|
"\n",
|
|
" xref[0, i] = dx * np.cos(-state[3]) - dy * np.sin(-state[3])\n",
|
|
" xref[1, i] = dy * np.cos(-state[3]) + dx * np.sin(-state[3])\n",
|
|
" xref[2, i] = target_v # sp[ind + dind]\n",
|
|
" xref[3, i] = normalize_angle(path[2, ind + dind] - state[3])\n",
|
|
" dref[0, i] = 0.0\n",
|
|
" else:\n",
|
|
" dx = path[0, ncourse - 1] - state[0]\n",
|
|
" dy = path[1, ncourse - 1] - state[1]\n",
|
|
"\n",
|
|
" xref[0, i] = dx * np.cos(-state[3]) - dy * np.sin(-state[3])\n",
|
|
" xref[1, i] = dy * np.cos(-state[3]) + dx * np.sin(-state[3])\n",
|
|
" xref[2, i] = 0.0 # stop? #sp[ncourse - 1]\n",
|
|
" xref[3, i] = normalize_angle(path[2, ncourse - 1] - state[3])\n",
|
|
" dref[0, i] = 0.0\n",
|
|
"\n",
|
|
" return xref, dref"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-10-23T09:14:43.898791Z",
|
|
"start_time": "2024-10-23T09:14:36.364854Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"CVXPY Optimization Time: Avrg: 0.0378s Max: 0.1155s Min: 0.0311s\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"track = compute_path_from_wp(\n",
|
|
" [0, 3, 4, 6, 10, 12, 14, 6, 1, 0], [0, 0, 2, 4, 3, 3, -2, -6, -2, -2], 0.05\n",
|
|
")\n",
|
|
"\n",
|
|
"# track = compute_path_from_wp([0,10,10,0],\n",
|
|
"# [0,0,1,1],0.05)\n",
|
|
"\n",
|
|
"sim_duration = 200 # time steps\n",
|
|
"opt_time = []\n",
|
|
"x_sim = np.zeros((N, sim_duration))\n",
|
|
"u_sim = np.zeros((M, sim_duration - 1))\n",
|
|
"\n",
|
|
"# Starting Condition\n",
|
|
"x0 = np.zeros(N)\n",
|
|
"x0[0] = 0 # x\n",
|
|
"x0[1] = -0.25 # y\n",
|
|
"x0[2] = 0.0 # v\n",
|
|
"x0[3] = np.radians(-0) # yaw\n",
|
|
"x_sim[:, 0] = x0 # simulation_starting conditions\n",
|
|
"\n",
|
|
"# starting guess\n",
|
|
"action = np.zeros(M)\n",
|
|
"action[0] = MAX_ACC / 2 # a\n",
|
|
"action[1] = 0.0 # delta\n",
|
|
"u_sim[:, 0] = action\n",
|
|
"\n",
|
|
"# Cost Matrices\n",
|
|
"Q = np.diag([20, 20, 10, 20]) # state error cost\n",
|
|
"Qf = np.diag([30, 30, 30, 30]) # state final error cost\n",
|
|
"R = np.diag([10, 10]) # input cost\n",
|
|
"R_ = np.diag([10, 10]) # input rate of change cost\n",
|
|
"\n",
|
|
"mpc = MPC(N, M, Q, R)\n",
|
|
"REF_VEL = 1.0\n",
|
|
"\n",
|
|
"for sim_time in range(sim_duration - 1):\n",
|
|
"\n",
|
|
" iter_start = time.time()\n",
|
|
"\n",
|
|
" # dynamics starting state w.r.t. robot are always null except vel\n",
|
|
" start_state = np.array([0, 0, x_sim[2, sim_time], 0])\n",
|
|
"\n",
|
|
" # OPTIONAL: Add time delay to starting State- y\n",
|
|
"\n",
|
|
" current_action = np.array([u_sim[0, sim_time], u_sim[1, sim_time]])\n",
|
|
"\n",
|
|
" # State Matrices\n",
|
|
" A, B, C = get_linear_model_matrices(start_state, current_action)\n",
|
|
"\n",
|
|
" # Get Reference_traj -> inputs are in worldframe\n",
|
|
" target, _ = get_ref_trajectory(x_sim[:, sim_time], track, REF_VEL)\n",
|
|
"\n",
|
|
" x_mpc, u_mpc = mpc.optimize_linearized_model(\n",
|
|
" A, B, C, start_state, target, time_horizon=T, verbose=False\n",
|
|
" )\n",
|
|
"\n",
|
|
" # retrieved optimized U and assign to u_bar to linearize in next step\n",
|
|
" u_bar = np.vstack(\n",
|
|
" (np.array(u_mpc.value[0, :]).flatten(), (np.array(u_mpc.value[1, :]).flatten()))\n",
|
|
" )\n",
|
|
"\n",
|
|
" u_sim[:, sim_time] = u_bar[:, 0]\n",
|
|
"\n",
|
|
" # Measure elpased time to get results from cvxpy\n",
|
|
" opt_time.append(time.time() - iter_start)\n",
|
|
"\n",
|
|
" # move simulation to t+1\n",
|
|
" tspan = [0, DT]\n",
|
|
" x_sim[:, sim_time + 1] = odeint(\n",
|
|
" kinematics_model, x_sim[:, sim_time], tspan, args=(u_bar[:, 0],)\n",
|
|
" )[1]\n",
|
|
"\n",
|
|
"print(\n",
|
|
" \"CVXPY Optimization Time: Avrg: {:.4f}s Max: {:.4f}s Min: {:.4f}s\".format(\n",
|
|
" np.mean(opt_time), np.max(opt_time), np.min(opt_time)\n",
|
|
" )\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### RESUTS\n",
|
|
"\n",
|
|
"SCS -> Optimization Time: Avrg: 0.2139s Max: 0.3517s Min: 0.1913s\n",
|
|
"\n",
|
|
"OSQP -> Optimization Time: Avrg: 0.1035s Max: 0.1311s Min: 0.0959s\n",
|
|
"\n",
|
|
"ECOS -> Avrg: 0.2024s Max: 0.2313s Min: 0.1904s\n",
|
|
"\n",
|
|
"**Qualitative result** aka \"it drives?\" seems the same..."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2024-10-23T09:14:55.715889Z",
|
|
"start_time": "2024-10-23T09:14:55.474003Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": "<Figure size 1500x1000 with 5 Axes>",
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrG8e+ZzKRXUoFQAiQYSigqglhQV8CIBXddV2EV29pWYbHvruvqrgVcsKBr+a0rINhdXUssKGsDBKWGIqH3NNJ7JnN+f5xkSCAJQTKZJNyf6+KamTNnznnf5ADJPc88r2GapomIiIiIiIiIiIiIiBzB5u0BiIiIiIiIiIiIiIi0VwrRRURERERERERERESaoBBdRERERERERERERKQJCtFFRERERERERERERJqgEF1EREREREREREREpAkK0UVEREREREREREREmqAQXURERERERERERESkCQrRRURERERERERERESaoBBdRERERERERERERKQJCtFFRERERERERERERJpg9/YAvCU/Px+n0+ntYbS66OhocnJyvD0M6aB0/cjx0PUjx0PXjxwPXT9yvHQNyfHQ9SPHo7NcP3a7nYiICG8Po0NrSU7VWa4XzaP96SxzaW4ex/vv1AkbojudTqqrq709jFZlGAZgzc00TS+PRjoaXT9yPHT9yPHQ9SPHQ9ePHC9dQ3I8dP3I8dD1I/UdLafqLNeL5tH+dJa5eHoeauciIiIiIiIiIiIiItIEhegiIiIiIiIiIiIiIk04Ydu5iIiIiIiIiIhI57dx40Y++OADduzYQX5+PnfddRcjRow46mvmzZvH3r17iYiI4OKLL2bs2LEN9vn+++958803ycrKIjY2liuvvPKoxxWRjkmV6CIiIiIiIiIi0mlVVlbSu3dvrrvuuhbtn52dzWOPPUZycjIzZsxg4sSJvPLKK3z//ffufTIyMnjqqac466yzeOKJJzjrrLN48skn2bJli6emISJepEp0ERERERERERHptIYNG8awYcNavP/nn39OVFQUU6ZMASA+Pp5t27bx4YcfMnLkSAA+/vhjUlJSmDhxIgATJ05k48aNfPzxx0ybNq21pyAiXqYQXUREREREREREpNaWLVtISUlpsG3o0KH873//w+l0YrfbycjI4MILL2ywz5AhQ0hLS2v22NXV1VRXV7sfG4ZBQECA+35jXJ+/T803n5EZFIT5q2sxEgf+nGm1C3VzbGquHUVnmQd0nrl4eh4K0UVERERERERERGoVFBQQFhbWYFtYWBg1NTUUFxcTERFBQUEB4eHhDfYJDw+noKCg2WO/9957vPPOO+7HCQkJzJgxg+jo6KbHg4vizL1UA/7/+5jos35xrFNqd+Li4rw9hFbRWeYBnWcunpqHQnQREREREREREZF6Dq9mNU2z0e2H73O0KtiJEycyYcKEI86Tk5OD0+ls/LjDTsdm98X12otUrFnB/l07MXz9WjSP9sYwDOLi4sjMzHR/TTuizjIP6DxzOdo87HZ7s29WHY1CdBERERERERERkVqNVZQXFRXh4+NDcHBwk/sUFhYeUcF+OIfDgcPhaPS5JgPMqFiMcy7EZ9H71ORkYf60Dgaf0qK5tFemaXbowLZOZ5kHdJ65eGoetlY/ooiIiIiIiIiISAeVmJjIunXrGmxbu3Ytffr0wW636lGTkpJIT09vsM+6detISkryyJgMw8D/lNEAmD+lH2VvEWltCtFFRERERERERKTTqqioYOfOnezcuROA7Oxsdu7cSW5uLgCvvfYazz77rHv/sWPHkpuby7x589i7dy+LFy9m8eLFXHTRRe59UlNTWbt2Le+//z779u3j/fffJz09/YjFRluTT2RM7YTKPHYOEWmc2rmIiIiIiIiIiEintW3bNh566CH34/nz5wNw9tlnc9ttt5Gfn+8O1AFiYmK4//77mTdvHp999hkRERFce+21jBw50r1P//79mTZtGm+88QZvvvkmcXFxTJs2jcTERI/Nw6hrA1Nd7bFziEjjFKKLiIiIiIiIiEinNXDgQN56660mn7/tttuO2DZgwABmzJjR7HFHjhzZIFj3NMPha91xKkQXaWtq5yIiIiIiIiIiItLO1VWim6pEF2lzCtFFRERERERERETaO1Wii3iNQnQREREREREREZF2Tu1cRLxHIbqIiIiIiIiIiEg7515YVCG6SJtTiC4iIiIiIiIiItLOuSvR1RNdpM0pRBcREREREREREWnnVIku4j0K0UVERERERERERNo7d090p3fHIXICUoguIiIiIiIiIiLSzhl2LSwq4i0K0UVERERERERERNo5tXMR8R6F6CIiIiIiIiIiIu2cFhYV8R6F6CIiIiIiIiIiIu2c4at2LiLeohBdRERERERERESknXNXoitEF2lzCtFFRERERERERETau7qe6C4XpqvGu2MROcEoRBcREREREREREWnn3JXoANVO7w1E5ASkEF1ERERERERERKSdaxCiq6WLSJtSiC4iIiIiIiIiItLe+fiAYVj3FaKLtCmF6CIiIiIiIiIiIu2cYRhgr+2LrhBdpE0pRBcREREREREREekI6kL0aoXoIm1JIbqIiIiIiIiIiEhHoEp0Ea9QiC4iIiIiIiIiItIROOzWrUJ0kTZl9/YAREREREREREREPO2zzz7jgw8+oKCggPj4eKZMmUJycnKj+z733HN8/fXXR2yPj49n9uzZAHz11Vf885//PGKfBQsW4Ovr27qDr6NKdBGvUIguIiIiIiIiIiKd2tKlS5k7dy433HAD/fv354svvuDRRx/lySefJCoq6oj9r732WiZNmuR+XFNTw913383IkSMb7BcQEMDTTz/dYJvHAnRQT3QRL1E7FxERERERERER6dQ++ugjzj33XM477zx3FXpUVBSff/55o/sHBgYSHh7u/rNt2zZKS0s555xzGuxnGEaD/cLDwz07EXclutOz5xGRBlSJLiIiIiIiIiIinZbT6WT79u1ceumlDbanpKSwefPmFh1j8eLFDB48mOjo6AbbKyoquPXWW3G5XPTu3ZsrrriChISEJo9TXV1Ndb0qcsMwCAgIcN9vSt1zhsOBCVBT3ez+7ZV7Hh1w7PV1lnlA55mLp+ehEF1ERERERERERDqtoqIiXC4XYWFhDbaHhYVRUFBw1Nfn5+ezZs0a7rjjjgbbu3Xrxq233krPnj0pLy8nLS2NBx54gCeeeIKuXbs2eqz33nuPd955x/04ISGBGTNmHBHON8U3MIhKICI4mMAmztERxMXFeXsIraKzzAM6z1w8NQ+F6CIiIiIiIiIi0uk1VqHakqrVr776iqCgIEaMGNFge1JSEklJSe7H/fv359577+WTTz7huuuua/RYEydOZMKECUecPycnB2czLVoMwyAuLo4q0wQgPyeHwgMHjjr29qZuHpmZmZi1c+mIOss8oPPM5WjzsNvtLX6zqjEK0UVEREREREREpNMKDQ3FZrMdUXVeWFh4RHX64UzT5H//+x9nnnkmdnvzMZrNZqNv375kZmY2uY/D4cDhcDR5rqOq7YluVld16MDTNM0OPf46nWUe0Hnm4ql5aGFRERERERERERHptOx2O3369GHdunUNtq9bt47+/fs3+9qNGzeSmZnJueeee9TzmKbJrl27PLu4aF2QX6+vuoh4nirRRURERERERESkU5swYQJz5syhT58+JCUl8cUXX5Cbm8v5558PwGuvvUZeXh6///3vG7xu8eLFJCYm0rNnzyOO+fbbb5OYmEjXrl3dPdF37tzJ9ddf77mJ1Fai41SILtKWFKKLiIiIiIiIiEindvrpp1NcXMy7775Lfn4+PXr04P7773f3SM7Pzyc3N7fBa8rKyli+fDlTpkxp9JilpaW89NJLFBQUEBgYSEJCAg899BD9+vXz3EQUoot4hUJ0ERERERERERHp9MaNG8e4ceMafe622247YltgYCALFixo8nhTpkxpMmD3GIdCdBFvUE90ERERERERERGRjqCuEl090UXalEJ0ERERERERERGRjkDtXES8QiG6iIiIiIiIiIhIB2A4fK07qkQXaVMK0UVERERERERERDoCPz/rtqrCu+MQOcEoRBcREREREREREekIfP0BMCsVoou0JYXoIiIiIiIiIiIiHYGfFaJTWendcYicYBSii4iIiIiIiIiIdARq5yLiFQrRRUREREREREREOoK6SvQqVaKLtCWF6CIiIiIiIiIiIh2A4at2LiLeoBBdRERERERERESkI6hr56KFRUXalEJ0ERERERERERGRjsDdzkUhukhbUoguIiIiIiIiIiLSEaidi4hX2L09ABERERERERER6XxKSkp+1usCAwOx2VT32ai6SvQaJ6bTiWFXtCfSFvQ3TUREREREREREWt31119/zK8xDINHH32UPn36eGBEnUBdT3SwWrrYg703FpETiEJ0ERERERERERHxiHPOOYfIyMgW7etyufjPf/7j4RF1bIbdAT4+UFNjtXQJVIgu0hYUoouIiIiIiIiIiEf84he/oF+/fi3aVyF6C/n6Q3kpVGpxUZG2ogZTIiIiIiIiIiLS6q655hqio6NbvL/NZuOaa64hKirKg6PqBOpaulQpRBdpK6pEFxERERERERGRVpeamtomrznh+NYuLlpZ6d1xiJxAVIkuIiIiIiIiIiJeUVVV5e0hdDx1lehq5yLSZlSJLiIiIiIiIiIiHrV06VKKi4sZN24cAJmZmcyYMYP9+/fTv39/7rnnHoKDtUhmi/jVVqKrnYtIm1GILiIiIiIiIiIiHvXhhx8yatQo9+NXX32V0tJSUlNT+eabb3jvvff47W9/69ExfPbZZ3zwwQcUFBQQHx/PlClTSE5ObnTfDRs28NBDDx2x/cknn6R79+7ux99//z1vvvkmWVlZxMbGcuWVVzJixAiPzQFwt3MxKysxPHsmEamlEF1ERERERERERDwqKyuLHj16AFYLl7Vr13LjjTdy9tln061bNz788EOPhuhLly5l7ty53HDDDfTv358vvviCRx99lCeffLLZhUyfeuopAgMD3Y9DQ0Pd9zMyMnjqqae44oorGDFiBCtWrODJJ5/k4YcfJjEx0WNzUTsXkbannugiIiIiIiIiIuJRlZWV+NWGv1u3bqW6upphw4YBEB8fT15enkfP/9FHH3Huuedy3nnnuavQo6Ki+Pzzz5t9XVhYGOHh4e4/NtuhKO3jjz8mJSWFiRMn0r17dyZOnMigQYP4+OOPPToXQ+1cRNqcQnQREREREREREfGoiIgIdu7cCcCaNWvo1q2bu6q7tLTUHbB7gtPpZPv27QwZMqTB9pSUFDZv3tzsa++55x5+97vf8fDDD7N+/foGz2VkZJCSktJg25AhQ8jIyGidgTeltp0LlZWePY+IuKmdi4iIiIiIiIiIeNSIESN444032LhxI2vWrOGSSy5xP7dr1y5iY2M9du6ioiJcLhdhYWENtoeFhVFQUNDoayIiIvjd735Hnz59cDqdfPPNN/ztb3/jwQcfZMCAAQAUFBQQHh7e4HXh4eFNHhOgurqa6upq92PDMAgICHDfb0rdc4Zh1FtYtLLZ17RHDebRgXWWeUDnmYun56EQXUREREREREREPOo3v/kNFRUVZGRkcMYZZzQI0VetWsXgwYM9PobGwrWmArdu3brRrVs39+OkpCRyc3P58MMP3SF6Y0zTbDbEe++993jnnXfcjxMSEpgxYwbR0dEtmQJxcXEURkZRBATZbUR07dqi17U3cXFx3h5Cq+gs84DOMxdPzUMhuoiIiIiIiIiIeJSvry+/+93vGn3ukUce8ei5Q0NDsdlsR1SIFxYWHlGd3pykpCS+/fZb9+PGqs6PdsyJEycyYcIE9+O6wD0nJwen09nk6wzDIC4ujszMTGqqrf1K8w5SceBAi8ffHtSfh2ma3h7Oz9ZZ5gGdZy5Hm4fdbm/xm1WNUYguIiIiIiIiIiJtLjc3l71799K3b19CQkI8dh673U6fPn1Yt24dI0aMcG9ft24dp556aouPs2PHjgbtW5KSkkhPT28Qiq9bt46kpKQmj+FwOHA4HI0+15IA0zRNTH+r/YtZXtZhQ0/TNDvs2OvrLPOAzjMXT81DC4uKiIiIiIiIiIhHvfHGG8ydO9f9eN26dUydOpXHHnuMO+64gz179nj0/BMmTODLL79k8eLF7N27l7lz55Kbm8v5558PwGuvvcazzz7r3v/jjz9mxYoVHDhwgD179vDaa6+xfPlyxo8f794nNTWVtWvX8v7777Nv3z7ef/990tPTufDCCz06F2pDdCrKPXseEXFTJbqIiIiIiIiIiHjU8uXLG4TLb775Jr169eKyyy7j7bff5t1332XatGkeO//pp59OcXEx7777Lvn5+fTo0YP777/f3d4hPz+f3Nxc9/5Op5NXX32VvLw8fH196dGjB/fddx/Dhw9379O/f3+mTZvGG2+8wZtvvklcXBzTpk0jMTHRY/MAMPwDMEEhukgbUoguIiIiIiIiIiIelZeX517wr7i4mK1bt3L//fczdOhQqqqqePXVVz0+hnHjxjFu3LhGn7vtttsaPL7kkksaLH7alJEjRzJy5MhWGV+LBQRatwrRRdqM2rmIiIiIiIiIiIhH1e9TvHnzZmw2GwMGDAAgIiKCoqIibw6vY1E7F5E2pxBdREREREREREQ8KjY2lpUrVwKwZMkS+vXrh6+vL2C1UgkODvbm8DoW/7pK9DLvjkPkBKJ2LiIiIiIiIiIi4lHnn38+L7/8Mt988w2lpaXccsst7uc2b95MfHy8F0fXwbgr0SswTRPDMLw7HpETgEJ0ERERERERERHxqLFjxxIUFMTmzZvp168fZ511lvu5qqoqzj77bC+OroOpC9FNF1RVgp+/d8cjcgJQiC4iIiIiIiIiIq1u586d9O7d2/149OjRjB49+oj9brrppjYcVSfg6weGzQrRy8sUoou0AYXoIiIiIiIiIiLS6u69915iYmI47bTTGDlyJP369fP2kDoFwzCsavTyUi0uKtJGFKKLiIiIiIiIiEirmzlzJsuXL2f58uV8+OGHdOnSxR2o9+/fX728j4c7RNfioiJtQSG6iIiIiIiIiIi0ul69etGrVy9+/etfs2/fPneg/sknnxAWFsapp57KyJEjGThwIDabzdvD7Vjci4uqEl2kLShEFxERERERERERj+revTuXXXYZl112GdnZ2SxbtowVK1bwxRdfEBwczMknn8zIkSMZPny4t4faMShEF2lTCtFFRERERERERKTNxMTEcMkll3DJJZeQm5vL8uXLWbFiBU888QSvv/66t4fXMQQEAmBWlKGmOCKepxBdRERERERERES8IioqigsvvJALL7yQgoICbw+n41AlukibUoguIiIiIiIiIiJtYs+ePeTk5FBdXd1gu2EYjBgxwkuj6ngMvwBMgHKF6CJtQSG6iIiIiIiIiIh4VGZmJrNnz2bXrl1N7vPmm2+24Yg6uNp2LqpEF2kbCtFFRERERERERMSjXnrpJQoKCrjmmmuIj4/HblckdVzc7VzKvDsOkROE/sUSERERERERERGP2rp1KzfddBOjR4/29lA6h7pK9PJS745DMMtKYN9ujMQB3h6KeJDN2wMQEREREREREZHOLTQ0lMDAQG8Po/MIDAbALFOI7k2mqwbXX36Pa+Z9mFs2ens44kEK0UVERERERERExKPGjh3Ll19+6e1hdBpGYJB1p6zEuwM5wZnL/geFedb9HZu9PBrxJLVzERERERERERERj7r44ouZP38+9957L8OGDSM4OPiIfSZMmOCFkXVQtZXoqBLdq1xL6r0xpO9Fp6YQXUREREREREREPGrLli18/fXXlJSUsHPnzkb3UYh+DIJqQ/RSVaJ7VXm9hV0L8rw3DvE4hegiIiIiIiIiIuJR//73vwkJCeGWW26he/fu2O2KpI5LXSW6Fhb1ruoq912zUCF6Z9ah/8V67733eP3110lNTWXKlCneHo6IiIiIiIiIiDRiz549TJs2jVNOOcXbQ+kc6nqiV1ZgOp0YelPCzXTVgMtsm69JvRBdleidW4f9G7Z161a++OILevXq5e2hiIiIyHHIyrLx4otw6aU2YmJqyMqysWBBEJMnlxIb6/L28ERERESkFURFRWGaplfH8Nlnn/HBBx9QUFBAfHw8U6ZMITk5udF9ly9fzueff87OnTtxOp3Ex8dz+eWXM3ToUPc+X331Ff/85z+PeO2CBQvw9fX11DQsAYGH7peVQGi4Z8/Xgbhm/Rlys7E9/E8MPz/PnqxBiH7Qs+cSr7J5ewA/R0VFBXPmzOGmm24iKCjI28MRERGR45CVZeOhh6xbgOxsH2bPDiE724esLBuzZoW4nxMRERGRjunSSy/lww8/pKqq6ug7e8DSpUuZO3cul112GTNmzCA5OZlHH32U3NzcRvfftGkTKSkp3H///Tz++OMMHDiQGTNmsGPHjgb7BQQE8NJLLzX44/EAHTBsPhBQm4mVqS96HdM0IWMD5OXAT+s8f8L6IXpJMWZ1tefPKV7RISvR//WvfzFs2DBSUlL4z3/+4+3hiIiIyM9QV3F+yilN/yJVF6iPHVtBbKxLVeoiIiIiHdT27dvJy8vj9ttvZ+DAgQQHBzd43jAMrr32Wo+d/6OPPuLcc8/lvPPOA2DKlCmsXbuWzz//nKuuuuqI/Q9vG3zVVVfx448/snLlShISEhqMOzw83GPjblZgkNUTvUx90d1qnO67Zn4uhqfPV33Y7zKFeRAV6+mzHhczaz+u+c9iG/9LjMEne3s4HUaHC9GXLFnCjh07eOyxx1q0f3V1NdX13gUyDIOAgAD3/c6kbj6dbV7SNnT9yPHQ9SPHKivLxpIlvsyeHcK0acUAfPqpP1u22Nm61frxJD3dgb+/9ZHfvDwbhmE0CNXj4kyysmy8+mogv/1tmUL1E5T+/ZHjpWtIjoeuHzkeJ9r189lnn7nvL1mypNF9PBWiO51Otm/fzqWXXtpge0pKCps3b27RMVwuF+Xl5UeE/xUVFdx66624XC569+7NFVdc0SBkP9zPzakavV4Cg+FgNpSXtvg6Ml0u2LoR4hMwAtu+u4PHr/v6leAFBz12HsMwMGtqwFkb2vsHQEU5RmE+RnScR87ZWlzvvAIZ63FlrMf+rw87zb9Fnp5HhwrRc3NzmTt3Ln/6059a/NGY9957j3feecf9OCEhgRkzZhAdHe2pYXpdXFz7/ssq7ZuuHzkeun6kpV58ER56yLr/1FMhDW7r3H13uPv+669H0r8/1H3aNjo6mq5d4cABmD0bJk0KcR/3ppuga1ePT0HaGf37I8dL15AcD10/cjxOlOvnzTff9Nq5i4qKcLlchIWFNdgeFhZGQUFBi47x0UcfUVlZyahRo9zbunXrxq233krPnj0pLy8nLS2NBx54gCeeeIKuTfxAerw5Vf3rJTuiC5V7thPusBPUwh+ASxd/TN6sB3EkDiDuqfkteo0neOq6r8k/yP7a+wHlJUR68BcDV0W5+76jWw+qt2cQ7qomsJ3/MpJtQGXt/frXaWf5t8hT8+hQIfr27dspLCzkvvvuc29zuVxs2rSJTz/9lNdeew2brWHP1IkTJzJhwgT347p3I3JycnA6nXQmhmEQFxdHZmam1xfrkI5H148cD10/0lLr19uZNy+Q00+vZOpUB08/HcLll5fx9tuBXHVVKQMHVvPBBwEsX95wAaAPP7T+1Fm8uICcnGq2bLEDEeTk5JCTAw89FM2oUTmAU1XqJwj9+yPHS9eQHA9dP3I8OtP1Y7fbO0SxYmMVqi2pWv3uu+94++23ufvuuxsE8UlJSSQlJbkf9+/fn3vvvZdPPvmE6667rtFj/dycqrHrpcbuAKBg/16KDhw46jwAaj77AIDqLRs50MLXtCZPX/dmbpb7ftmu7VR5aI6GYRAd6O9+7IzrAdszyNuUTmFSikfO2Vpqgg9dw/t378Lm69cp/i062rV1vP9OdagQffDgwfzjH/9osO3555+nW7duXHLJJUcE6AAOhwOHw9Ho8TryhdEc0zQ77dzE83T9yPHQ9SNHM29eIAsXBrFw4aGPjr79diAAr70WxPTpxdxxRwmTJvkxZ04+FRVGg4r0Oodvq9/65eBBA9O0Wr3UtX4xTVO91Ds5/fsjx0vXkBwPXT9yPHT9eF5oaCg2m+2IqvPCwsIjqtMPt3TpUl544QWmT59OSkrz4ajNZqNv375kZmY2uc/x5lQNrpdAq7WMWVrS8mso5NB8XS6XR1pfmK4azAXPQ5/+2M44v/F9PHTdm/UXrs0+4NG/W2ZVbT23jx2697K27dvd/v8++we475qZ+zB7WO2HOsu/RZ6ax5GpczsWEBBAz549G/zx8/MjJCSEnj17ent4IiIi0oisLBuzZoWQlWUjNbUCgDlz8nniiQIApk4tdm+bPLmUyEgr5E5MdDJ4cLX7uU8/zXG/5nB33x3O7bdHADB3bjDp6Y7aKnVLXS/17GyfI8YkIiIiIp5x1113sXv37hbv73K5uOuuu9i7d2+rjsNut9OnTx/WrVvXYPu6devo379/k6/77rvveO6557jjjjsYPnz4Uc9jmia7du1qu4VG63qaH8vCovVCdMpKWnc8dTasxvz2c8x5czxz/OZUVx66X1yI6ak5Ui+wdzgwutXmkvtbfr17Tf2+8Zmt+3etM9NvjiIiIuJRmzY5mD07hCVL/Ni/3wqxKyoMd+V4UlI1Dz4IZ5xRRWysi5iYGqZPLyYmpsZ9jLpA/fBQ/fzzK44436JF/owfH+0O1esH6gcPWpU29UP1wwN1BewiIiIirWPPnj1U1a8M9tBrWmLChAl8+eWXLF68mL179zJ37lxyc3M5/3yrUvq1117j2Wefde9fF6BfffXVJCUlUVBQQEFBAWVlZe593n77bdasWUNWVhY7d+7k+eefZ+fOnYwdO7bVx9+o4FDrtqig5a8x630qs17rk1blOlQFbJYUeeYcTTn82tmz02OncleiO3yhLkTP3o9ZP6Ruj6oPfY1Mhegt1qHauTTmr3/9q7eHICIiIs1IS7N6BdaF2tCwHcvSpX4sWAAHDrgwTYiNdXHnncXu5w8P1OFQqD5lSimLFvm3uPXL3LnBREYWN1qlPnZsBbGxrgaPAbWBERERETkOTzzxRJPtS9rS6aefTnFxMe+++y75+fn06NGD+++/390jOT8/n9y6VeyBL774gpqaGl5++WVefvll9/azzz6b2267DYDS0lJeeuklCgoKCAwMJCEhgYceeoh+/fq1yZyMmG6YgJm1r+UvqqxXqZ2bBb08MdZ6rTSy9h8K+9tCdcMQ3dyZgdF/kEdO1SBEj4iEgEAoL4Ps/e72Lu1S/a/R/j3eG0cH0+FDdBEREWl/srJsbNpkJy0tgOhoKwCva9vy9NMhPPBAISed5CQtzZ9rrikDgho9zuGB+uFV6vVbv9SZMyefxEQns2aFsGiRf4PjLVrk32Db4b3UD3d4wJ6VZVOoLiIiItJCZ5999s96XWioZ0LXcePGMW7cuEafqwvG67SkaHPKlClMmTKlFUb2M3WNt24P7ME0zZb1N686FKKbudm0fkf0euEyYGYfwOh7kgfO0oTDQ/QdGR47lXuevr7W175rD9i+2WqR0o5DdLN+Jfr2zV4cSceiEF1ERERa3YIFQcyeHdJg29NPH3q8fbudm28uZcyYymNazKi5UL2u3/nPrVJ/5pkQ8vLK2LrV+vGosYBdobqIiIhIy916663eHkLnFtMVfHygohzyD0KXqKO+xKyq1w7RU+1cKuudI3u/Z87RlMNbqezY4rlz1bWOsftatxGRAJiF+R55c6LV1H+j4WA2ZmE+dO3qvfF0EGr2KSIiIq1u8uRS5szJBw5VoD/xRIF7W2pqeaucpy5Ub6yXenMLlDbWS335cj9uvz3CHfYfbbFSaL63uoiIiIiIJxl2B0TXhp8HWtiWo17AfUxtYI5F/ZYxWW0bopt1C4smJIFhQF4O5rH0jD+Wc9V9LX2tEN0ICbcee+h8reawvvHmtp+8NJCORZXoIiIi0mrWr7czf34QqanlVFQ0rL/w9zdJSqpm+vRikpOdTRzhENM0IS8XdmzG3JGBuT0D9u8ClwsMm/VDsc2w7ttsRBkG0wwbPGmjxjDo77Kx5lI7oW/5UB4QxwPJfRhRFk53I5qbL+vFV18kM/uZEneV+tSpxfTr52TBgkCWL/drMJbG2sAAzfZWV5W6iIiIiHhctx6QuRfzwB6MgcOOvn/9gHvnFkyXC8PWykUg9ardzewDrXvso6mrRA8Nh7AIKMiD/FzrcStzt0Vx+B46J7T/EL1u3KHhUFSgEL2FFKKLiIhIq5k/P4iFC60/deoqu2+/PYLp04sbtGOpz6wow9yx5VBgvmMzFOb/7LH4AF0AMiGEndyY8D18Da6v4VQgY7yNmu+iqA7rSs2gPpwXHU7XntH0mNyT364cxKNPVreoDQwcvfULaIFSEREREWl9RlwPTJZZfbhbon47l/IyOLAXuvds3UHVb+eybxdmZSWGn1/T+7em2iprw+7ADK0N0Y/jd4rmmJX1FhYFd4huFhd65HytpjZEN05KwVzxDeZ2hegtoRBdREREjltd1fWoURUsXBjUoA/5Aw8Usn27ndTUCpKTD/UoNEuLMVctg+2bydyznZrdO8A8LGC22SC+N0ZCEiT0x+jVF3z9wDStfV2uevcPv619rqIcMzcTsjOt25xMzOxMfKor8SnOxrc4m6t6roWl4FoKw4ENY6HquxgqovuyP3EQp1/RnS4pvVm1szt33xNxxPzrh+pz5wYTGVmsKnURERER8bx6fbhbpC74NWxgujC3/4TR6iF6vWp3ZzVs2QCDhrfuOZrirK2y9vW1KtHxXI/y+guLAhghYZjQASrRa38n6z8YVnwDO7diHt5LXo6gEF1ERESOS1aWjSVL/Jg9O8Td/7yiwnBXZp90UjU331zq3t8sysf8/L+YX30ClVZvdPePbF2ircC8TxJGQn/o2bdVqlYO/6HZNE2rIiUnk8JtWWz46iBD43fjX3wAV1YmttJCfGsD9j8kLoNVwCro4xdMj9P6E3tyL/wTE3gpbTCvfnESTvPQj1SNtX45lip1BewiIiIi0lJGaPixBbd1wW9yCmxcA9s3w5ljW3dQVQ3XHzI3rMZoqxC96lCLlWP+2hyjuhDdsHe0di614+6RgBkYDGUlVO3IgJAuXh5Y+6YQXURERI7LggVBzJ5ttWypvyhnnbS0AMaMqcLMy8H87D3Mbz8/1Ievey+MISOIHH4a+RExHulV2BjDMCC8C4R3ITxxAKPHH3rOBzDLSmDvToo27GDXkj30D8zAnr0bn8oSTo9cCTtXwk54yAF/HOugPKIXeUH9+PcXKawpGMhPxYlUuXyP+Fq0pEpdbWBEREREpMWONbitbbViJA/B3LjGM/2w69q59OkP2zdjblgFXN/652lM/T7lwQHW/cI8j5zq8Ep09/ei3bdzqS1h8vWzvkfrV1L1UzqcerZ3x9XOKUQXERGRn6VuEdFRoyqYOrWYp58O4Ve/KuOddwKZOrWYxMQqli3z5/qLt+Ka/ybm0sVQU7ugaJ/+2C78NQw+BZvNRkDXrhQcOGBViLcDRmAwJA0iLGkQKROtbaazmoPr9/HDu/s4M2ETAQe3UbNzB35VZfgVbSW8aCt/H/gpAC6bnR3OJL7ZPZjVBYNYUzCQnWU9WlSlXp/awIiIiEhns3//fvLy8qiqqiI0NJRu3boRGBjo7WF1XMcaolfVC9EBDuzBLCuxfv5tJXW9wo0hIzB3bLHOkZeL0SWq1c7RpPoheli4NZ7CAo+cynRXvTus29Aw67ayArOyAsPPv/EXelu9cRt9+2OuX0lVxgaF6EehEF1ERER+lsYWEX3nHesXoKefDuHvt6XzeNJczPnfYtb1Ou8/2ArPT0qxqsE7EMPuIGpoby4Y2hsYDUBupsEHrxTzq5Hrqdy6g/SPdnFWz/XYK4roa9tI394buZY3ASioCmVN4UDWFAxkTcEg1hQO5O67D/VXf+aZEPLyyti61frx7GhtYBSqi4iISEeRkZHBokWLWLNmDUVFRQ2es9ls9O7dmzPPPJMxY8YoUD9WdSF6VSVmRTmGf0CTu5o1NeCsLWqJjIHoOMjJhB1bYOCw1htTXYV2RBQkJFrV6BtXY5xxfuudoyn1QnQjLKK2nYuHFhatm6ejtv2kX4BVlV5VZb2pER3nkfMet7q+8Q4/iO0OQE12phcH1DEoRBcREZEWqx/apqYeuYjo1KnFfPnKPv71yxfotuM7zB21Lxx8CrbUyzH6JXt1/K0tNs7kxvuDgZFkDTiddUVBpEwqIca2n93fbOezF3Zz5ag1+OdsJdy3iDHRyxgTvcz9+t1l3VlTMIDVBYP58acU/nDHof7qR2sDA833VhcRERHxtp07dzJ37lw2bdpE9+7dOe200+jTpw+hoaH4+vpSUlJCVlYWW7Zs4fXXX+fNN99k4sSJTJgwAbtdkVVLGP4BVluOqkoruG0mRHe3WQHw88fo0x8zJxNz208YrRqi11a7+/nBgGGY2zfDhtXQFiF6vZ7ohNYWrLR00dVjdMTCooYBIeFwMLvdhuhmTQ3U1FgPHA6M8EhMoCYvx6vj6gj0L5KIiIi02KZNDmbPDiEhwUlFhVUdXbeIaJi9iCtKHubOM76CrNoXDB+FLfXXGL36em3MbSU21sWddxbXPuqK/5ndKd4VRNnkUnYecHH3lYX868/f061yE6UbthJYtJuegfvoGbiPi7stAsBp8yOjMpn/7R7KyvwUVuankF8d3mgbGKDZ3uqqUhcRERFv++Mf/8gZZ5zB1VdfTZ8+fZrdt6KigqVLl/Lf//6XmpoafvnLX7bRKDuB0HDIzbKC25iuTe9Xt+CnYQO7w+qHvfxrzF1bW3c8dWG9rz/GwGGYH71h9V931WD4eDiKdNb1+z7UzsXTC4tidxzaGBpuhege6sN+3Ooq9cGqRA+3FhOtOZiDrZ201myvFKKLiIhIi6WlWUHu7bcfakNy993hjIhYzadn/pnuB7LAsGGMOBPjgssxuvf01lC9rmGobuP8G+Jx/OICbLHj2Jnu4PIJAaQ9v5SAzM2se387Y3qtwV5RzADHGgb0XeM+ztaSXrWB+hBWFqSwtaR3gyp1OHrrF1CVuoiIiLS9WbNm0bVrM6FuPf7+/px77rmMGTOG3NxcD4+sk6kfojfHXTntZ1VNx3S12p20dhVybU90/PwhIQkCgqCsBHZts4J7DzrUYsVxqBK9suKorW5+3rlqA2lfP/c2I7435o4MzA2rMYaf3qrnaxUNQnSHO0Q3qyqhrBQCg5p4oShEFxERkWZlZdnYtMlOWloA0dHWR/+mTrXC4WefCeCd655jeOZCDNNFVVg3/H9/J0bvRG8Oud1pGKhDTEwNN95hEnRyCtnZw7jugWg+/Xs2g6J3svfrDL6eu4PLUlbhl7+HfsG76Be8iyt6fAhYvdVXFgx2B+tWb/Vw97Eba/2iKnURERHxhpYG6PXZbDZiYmI8MJpOLMRa0NIsLqTZVYfc4XZt6FsboFLQylXTdRXvfn4YPj6QPARWLcXcsMrjITrVtZXoDj8rNA8IgvJS2L0Nkga16qnMunk6DlWiG6ecgfnt55grl2JeeRNGe2tLVBei2+0YNhvYfCEoBEqLoeCgQvRmtLPvpIiIiLQ3CxYEMXt2SINtTz8dQo+Afbw9cionH1gHgDH6PPx/87tWr/DojA4P1adPLyYm1oURG4/vOT3J2hdE8eRSduwu4/Eb9/PELcuILt6Ia1sG4RRxXswSzotZAoDT5cOm4kR+zB/Cj/kprPx2COMXxULtr1DHWqWugF1EREQ84fe//z133XUXvXv3PuK53bt3M3PmTJ599tm2H1gnYISG1y6gWdD8jnVtVvxq2wSGR1q3JUWY1dUY9cLg41J5qOIdwBg4FHPVUswNq+GiK1vnHE2pts5dNxfj5NMxv1uE+dUnGK0eotdboLPOSYOtTwYUFVh94Iec2qrnPG6NjTk8EkqLMQsOYnQ7cT9JfDQK0UVERKRZkyeXkpDg5PbbI5g6tZinnw7hzbv+wykZT+FwluF0BOGYcgu2EWd5e6gd0uGBesPHgQz97RCMS/vhE+ti4xqDu68s4OU/LqFr+QbKN/yEf1kOg8N+YnDYT1zb+00ADpTHsLLA6qn+6t+HsLHIqvhpSZW62sCIiIiIJ+Tk5OB0Oht9rrq6mpwcLWz4s4WGW7dH68NdVzld134kKMTq5+2stl4bFds646k61BMdwEgaZIX8u7djerrvdr1KdADjnFQrRF+1FDMvF6NLVKudqkHrmFqGzQdjxNmYX/wX1zef4tPeQvS6SvT6Yw7vgrlvZ+t/IqGTUYguIiIijVq/3s78+UGkppa7FxF1uMqYnfIPRm38GID9AQPxv3U60SdFe3OondYRbWC6Gpx/Qzz2sROwxaayPd3BtZfW8O7MJQRkbmTvV1sYHPETXQOymRDwBRO6fgFAeY0fawsGsnJ3Cv+4OoUf81OAxqvU61MbGBEREWkLWVlZBATo04w/W1w8AObOoywQWr9XOVh90cO7WP3UCw62SohuOquhpqbBeYisbc9TVQklRUC34z5Pk+pCYl9fAIyefSFpIGRswPz8PYzf3NhqpzJrK/uN2nPVMc4ej/nFfyH9R8zcLIzWenOiNbhD9Hpjjqj9REL+wbYfTweiEF1EREQaNX9+EAsXWn8AhoSt5+J1f6Z3/F5qTBs/RP2W0x+51OpzKG2isd7qV94ahP8Zo8nKPouLHo3msw/3MDBoE9sWbWHb51s5K34NARQzMnIVIyNXuV+bUdyHH+YNYXHeMOIDhvLMM13Iyytn61brx8OjtYFRqC4iIiJH89VXX/H111+7H//rX/86Iiyvqqpi165dDBgwoK2H12k0qPQuK8Vooq91XehbfyFMwiNrQ/RWqkKuq84Gd+91w+ELYRFQmF+7iOlJrXOu5s5fr9LaduEVuDL+gvnNZ5hjJ7ZaNbqrpMi6ExjcYLsR193qA79pLebn72NcdVOrnK9VNBai1y0uWpjXfE/9E5xCdBEREXGrH4qmplawcGEQc545SO+Mtxmw9RUcthrybbHsPu8e+p3dH8NHwak3NdZbPbq7AyN2EOVVw7juMWvBUt/8vbxwzx5uT/2BuNIN+OXvISlkO0kh25nU8z0A9pfH8sPLQ8jLG8ZJIUO55+6+mNiAxtvAQPO91UVERESqqqooKipyPy4tLaW6rt1GLYfDwemnn86vf/3rth5ep2F0iYLoOMjJhK0bIaWJFiKH90SntpUHWP2wW2MwddXuPj4Y9no91rtEQ2E+Zp6H2/Yc1s4FsALtxAGwZSPmu/MwbryzVU7lKiq07gSHHvGc7YJf4dq01lpk9IJfYdRVe3vbYZX6AEZUrHUNrP0Bc+LVGAGB3hlbO6cQXURERNw2bXIwe3YICQlOKioMfG1VDF31OL2y/wc2yOl5FrF33kxUYDCgoLQ9aaxKvW7B0myjB2/tHc51l51O4OBqvvu0gn/dv4f7Lv+eiIPrCSvIoFtAFpcEfM4l3T4HoLA6mB/zh/BD3jB++HEoF6cOoMpl/bCdnm79QtRcb3VVqYuIiMjYsWMZO3YsALfddht33nlnowuLyvEz+g/GzMnE3Lweo6kQvbZy2ggOObStbnHR1qpEr2zYD92tSxTsyICDng7RG+n5bRjYrrgR1yPTMVd8jTlyDMbgk4/rNKar5lAlev2vZ52TUqDfANi6EfPduRg3tE5wf9yqjqxEN045A59P3qUmax/mwufh+ulWqx9pQCG6iIiIuKWlWT/s3n57BGH2Il499ff0yl5FtcuHP2+4D1v4+cwMLDrKUaQ9aKxKPSbG6k8Z1j2ERdlnc+dFA8gGTk8N4fMXvyPBtY685T/h2PsTYY4SzotZwnkxSwCoqPFlXeEAVuQNI23mEP6WP4Qip/ULw9Fav4Cq1EVERE50zz33nLeH0Ln1GwDfLcLcsbnpfYrrKqfDDm2LsFp5kN9a7Vzqqt39Gmw2ImOsauc2C9EP61Peqy/GuRMwv/wQ19ynsT3wJEb4cVSHl5VC3SKpgUeG6FZwfz2uR+/CXP415qhzMQYO+/nnayVmI18fwz+AiOkPknP/zZjLv4auPTAu1CdDDqcQXURE5ASXlWVj0yY7aWkBREdbIesDt27hsv33EVm1iypbIJvPfQBb5OlcfXWpl0crP0eTVeoxNWRn+1Dh8qesxxBsgwdwoJeDCy+I4Mt5Kwjcv4FVb27h3F6r8a/KZ0SXNYzosgYAl2nwU3E/VuQN5ZvZQ1mRZ/1S0FjrF1Wpi4iInJhyc3OJijr2/tN5eXl06dKl1cfz2Wef8cEHH1BQUEB8fDxTpkwhOTm5yf03btzIvHnz2Lt3LxEREVx88cXuyvo633//PW+++SZZWVnExsZy5ZVXMmLEiFYf+9EYvRMP9UV31WDYGlm3qLi2GCbkUIhuxHS1wu30HzHzDx7RdsTcvQ3Cu2CERrRsIOXl1q3/YS1BukRbtx5s52LW1Bzqie7nf8TzxmVXY/60DvbtwvXsI9imP4xxWD/zFiup/dk6IBDD3ni8avROxDjnQszFH+F6eTa2Pz/Zav3Yf7Ym3mTwHzQc229uxPXai5jvL8BlujAuvEIV6fXYvD0AERER8a4FC4KYNCmKhQuDeOqpUFLCNnLJ5t8TWbWLA+UxPB/0LEOvHMjMmYUMGuT09nClFdSF6rGxrgaBOlgB+9Q/lBM6qA95Qy/l5tUz2X7TQmx/f4F9v/gDb+65iJLA7tgMkwGhW5jS+22eG/Ynfjgvle/GXExq1qPMv/Fbnr6vADBJT3e4A/XDq9Szs33IyrIxa1YIWVnWj6WHPxYREZGOa+rUqbzyyitkZmYedV+n08myZcu4++67Wbx4cauPZenSpcydO5fLLruMGTNmkJyczKOPPkpubm6j+2dnZ/PYY4+RnJzMjBkzmDhxIq+88grff/+9e5+MjAyeeuopzjrrLJ544gnOOussnnzySbZs2dLq4z+qrt2t4LiyAg7sbXQXs6S2Ej2kXg/vwadC70QoL8X18mwriK7lSnsb19/+gOue63HNm4OZf/Do4ygvsW4P66tt1IboZs6BBudoVXXtVQyj0RYrhq8fttv+ZPUw37UV18z7MbP2/7xzldaG6EGNtHKpf85fXgPxvaG4ENfsBzzfE/5o3D3jfY94ynbuBIyLrgTA/O9ruP75GGZrtfnpBFSJLiIicoKbPLmUhAQnt98ewdPXf864PQ8TaK+gMKQPlyyew6yXfYAqbw9TPOTwKvVG28DEujBiu1E4oBd3p09i8BM5DOqZzfr/bmHZ/G38csiPhBZto2fgfnoG7ueX8WkA5FWF8cPrQ/khfyhDw4bx6tzeREaazVapq2pdRESk8/jzn//MvHnz+PTTT+nXrx8DBw4kISGBsLAwHA4HJSUlZGVlkZGRwdq1a6moqCA1NZUJEya0+lg++ugjzj33XM477zwApkyZwtq1a/n888+56qqrjtj/888/JyoqiilTpgAQHx/Ptm3b+PDDDxk5ciQAH3/8MSkpKUycOBGAiRMnsnHjRj7++GOmTZvW6nNojmHzgV59IWMD5s4tGN17HblTbTsXo34luo8Ptuum4XrkTticbvXEnnwr5vdfYb73qrVTjRPzu0WYK77GuOoWbKPPa3IcZlmZdScwqOETkTHW7e7t7L/qfMx+ydA7ESMhEXolYgQ1XRFubliNuW8XRv9BGL36Nf1FqGtXExTSeCU+YETHYbvzb7ie+qtVkf7wHRi/uBTjrHEYkdFNH/vwMTXXD73++Xz9sP3+z7hm3g9Z+3D9fTrGlb/DOOUM71R517bbMXyPDNEBbBdfiSs0HPONl2DN97jWr8Q4/TyMM34Bvfo2+XX1JrOyEkqKMKJiPHoehegiIiInqPXr7cyfH0RqajkVFQaTe77DJQdmYrO7yI46mfxf3c9V3QNJTlYLlxNVc21gjLAIGDaah+6/lFFP5pBZVcbfrjvAX65cRnzleux7fqKLbyHj4r5mXNzXAJTX+LHqL4PZkT+UM6OGsml1T+zBAcChKvXDqbe6iIhIx5WcnMzjjz/O6tWrWbRoEZ988glVVUcWZ8TExDBu3DjOP/98IiJa2DbkGDidTrZv386ll17aYHtKSgqbNzfeQ3zLli2kpKQ02DZ06FD+97//4XQ6sdvtZGRkcOGFFzbYZ8iQIaSlpTU5lurqaqrrqoGxemcHBAS47zel7rlm9+mdiJmxAXZuwTjj/CN3qFtYNCSswXGMbj3h+um4nn8M89vPMTethQKr6txIvRxbyqnUvP0KbNuE+doLMOTUBkF8gzGUl2ICRmBww7H2SMA4axzmj99ZC3KuWQ5rlmPWPR/bDaN3EkZCIkZCEnTvBS4Xrk/ewfzkHQBMX198Zs5tuDBqPe5gOzSs+a9Tjz4Yf5qN699PYv60DjPtLcxP3oZ+ydYY+g/GGHJq8yF3bTsXIzj0qGG4ERWLce/j1Dz7COzZjvnSE5gfvI4xfBTGSSkY0XEQGm5V0Jsm1LWlqayo/VNuBcWV5VB5aLtZ+xx1z5lgu/By6/vZlNLaTwoEhRxxTdXd+pyTitm3PzULX7S+5998ivnNp9ZrevaBmG4QGo4REAh2uzVm0wTDsL53CUlt9gaBuX83rhceB8MH259nNZhHa1OILiIicoKaPz+IhQuDeG1hAPf2f45HB80D4I09F/PHT/7IHVHlDQJUkeZ7qwfybe5Iai7sS+jgar7+0sbM23N59LqlhB9cT+D+DXTxLWR01I+MjvoRAOfXPmwsTuLB5KEsf2EgpQeS2LDn0GKlQIt6q991Vxt+EUREROSYDRs2jGHDhuF0Otm5cyf5+flUVVUREhJCfHy8R/qf11dUVITL5SIsrGHwGxYWRkFBQaOvKSgoaHT/mpoaiouLiYiIoKCggPDw8Ab7hIeHN3lMgPfee4933nnH/TghIYEZM2YQHd2yKui4uLgmnysbNoKDn7+Pfd8u4rp2bfCcaZrsre2JHtM3EXtsw+e58DLKQoI5OPuvkJsFQMCoc4i85W4Mmw3zjHPImnY11Vs3Ebj0C8Kn/L7RMRT62CgCAqOi6XLYGLj3EcwaJ1VbNlH1UzpVGRuoytiA88BeyNqPmbUfc/lXTU++qorQrekEX/DLRp8u3byWPMAvMoaYw899uK5dMf/xMuVLF1Py4VtUpq+ELRsxt2zEXPQ+QedfRMTUvzQZyBbZoBAIiIol8mjnqjvfM69S9M48iv+zEDNzL2ba25hpbx/9tcfApyCXmFmvNDnuPJeTUiCka3fCDht3g2ura1fMEaOp2rCG4g/eoGLNcszSYusNlk1rAQ69AXIY/1PPIPKeR7Ad/mmEVlb503pyHrsHykuxRUQSZTqPnEcrUoguIiJygqkLHkeNquDt1x18de0fiT/wFQA/dpvC2vApzLuvkOTk6uYPJCe8Rlu/1PZW7xLjw5rCQdjGxVLEREaPj+Tfj60j2bGWnV9kEF+RTs/A/aSEbSIlbJN1gMWQVNqT7oOHsuLpoTybN4xdZfGAFar7+1s/qh/eW33SJLDZbLz6aqCq1EVERNoxu91Ov37NtOPwsMaCxZZUf9cxTfOorzFNs9nnJ06c2KBdTd2+OTk5OJ1Nrz9kGAZxcXFkZma6x3HEucOtIL56ewb7d+/GcDgOPVdeBk7r5/vs8kqMAweOPEDiYHwe+z/MtcshKo6q5CFkZmW5n3aNmwhbN1H86XuU/eJSDJ8jW3vUZFv7l5kGlY2cwzAM4k4aTH54NOZp5wDgU1KEuXMr7MjA3JGBuXMLFBVYL4juiu3Sq6AgD9fbr5D/2X8pHnp6o/N37dkFQJWfPwcam19j+gyAqX/FJzcL86d0zO0/YX67iNJFH1I+8BRsg4Y3fq4D+wCo8LG3/FwA51yE7bRzMdcsx9y4GnP7Zsg/eGjBzzqGDfz9wdf/0K2fH4ZfAPj5Qb1bw88fHL64PnqDqs3r2f/xu9hOHt3o6eu+PyUmlNWOu9lrKzIOrp2GraYGdm3DPLAHM3u/VYlfXgquGqD2eq+uwtywmoofvmPfvb/D565HMHz9Wv61OQbmwWxqHppqjSFxIMbN93LQL4g4aPLviN1ub/GbVY1RiC4iInICycqysWSJH7Nnh3DP7w+w4NTfE39gFS7Dh7vWPMDESSOZOabI28OUDqj5KnUfTGx0HdadHoNj2NZ1AmdMiuT/ZmYQkr2BjLQMUpNWEl21gz5Bu+kTtJvf9PgAgOyKSJbnDWf5s8NYnjccgzDmzg0mMrK4QZV6VpZNvdRFRESkUaGhodhstiMqxAsLC4+oNq/TWEV5UVERPj4+BAcHN7lPc8cEcDgcOOqF2/U1FY4fvk+TIXpkjNWju6QYc+8Oa8HQuufqQmlfX/D1a/pcYREYZ41vfEyDTrEW0iwuxNycDslDjnx92aGFRZubT4N5BIVgDBwGA4fVxbFW6G+6ICAIwzCsRU3ffgW2bMRVmI8RGn7kMYvqFk4Na9HXsoHIGIzR52GMPg+Xy2X1gE//EXPgsMbHX68n+jGfKyAQY9Q5GKOsNxFM07TasWBY4bnNALvjmNuSGOWlmGlv4/r2c4zhjb/RYJZa4zaDjhx3c9cWNhskWD3smxuVuWMLrqcehO2bcc19BuOGO1u9vYrpqsH10hPWtdY7EdvUB8HP3z32ZudxHBSii4iInEAWLAhi9uwQuvjmM2b1nQyKzKCoOoibVj3BkoMj8EsrZcwYLSIqx6+5KvXISCvU7pESAZzBX/4xkRGzc4jrm8/OL7fwweydXHnqD0QU/kSM/0Eu6raIi7otAqCgKpQVeUN555bhrMgbjo8RwqpVdioqrB9rD69SVy91ERGR9uPAgQMsWrSIffv2HdEb3TAM/vKXv3jkvHa7nT59+rBu3TpGjBjh3r5u3TpOPfXURl+TmJjIypUrG2xbu3Ytffr0wW63fu5ISkoiPT29QWX5unXrSEpK8sAsjs4wDOjVDzasthYXrRei4w59mw74j3p8ux1j2EgrYF65BKOREN0sr11P6ThbeRgBgQ0fR0RafdL37YKtG6GxkLi4wLoNCT++cw862ZrjhtVN71Ra+3NuUOhxnQtqv2/+gUff8WjHGXWO1R5m0zrMshKMwEYWa63r5R7U/IKoP3sMCYnYbr4X19N/xVzxDcTFY1z0m1Y9h7nsK9j2EwQEYvvd3VYlfhuwtclZRERExKvWr7dzzz1h9OlTxZ9u287bp/2OQWEZ5FR24f2+T3HlQ32ZNKmUq6/WIqLS+uoC9boAu36Ven1GYDAlvUcwM+M2sn77BPZn32Dt+f9g5uZbyI46mWoff8J9ixgb+w1/SX6Kj0ZfTfr55+L30u389NR7nBqxhgVzfUlPdzTaSz072/rIcVaWjVmzQsjK0o/CIiIibWX37t3cc889rFy5kjVr1lBaWkpmZiYbN24kKyvLI5Wj9U2YMIEvv/ySxYsXs3fvXubOnUtubi7nn28twPnaa6/x7LPPuvcfO3Ysubm5zJs3j71797J48WIWL17MRRdd5N4nNTWVtWvX8v7777Nv3z7ef/990tPTj1hstC25g/OdWxo+UdsPnSYWBG3x8U+2wmtzzYrGv2dltb9PBLR+P2wjcYB17i0bG33edM/xOIPt5BSr8jpzL2ZuVqO7uM/VxCKn3mDExUPXHlDjxFz3Y+M71YX/wccf/jc5juQhGJNuAcD84DVcP3zXasc2q6sw33/VOs+FV1iLsrYRVaKLiIicAOoWEf3mPwW8ftof6Bmyj/3lsVy14jm2f9mb6dOLmTmz0NvDlBNEc1Xq9QN2w+GLI3kgz24bw4TnLia3xsm9Vx3kseuW0qtqLbbtGwi2lzAmehljopcBUFHjy+oHB7EjbzhnRA5j45qeOIKs6pSWVKmrDYyIiIhnvP766wwZMoQ//OEPXHXVVdx888306dOHVatW8fzzz/Ob37RuterhTj/9dIqLi3n33XfJz8+nR48e3H///e4eyfn5+eTm5rr3j4mJ4f7772fevHl89tlnREREcO211zJy5Ej3Pv3792fatGm88cYbvPnmm8TFxTFt2jQSExOPOH9bMXr2xQTM3dsbbDdL6lqdHGd42n8w+PpBYR7s2QE9+zR8vrzMGocnFpXsNwC++qTJEL2uEt043kr0wGDo2Rd2bsHcsQUjKvbIndwV941Ue3uRMWwk5oE9kP4jjBzT4DnTNOt9IsGz4b/tzLG4Mvdifv4+5juvYJ4yulXaupjLv4aCPOgShXHuhKO/oBUpRBcREemk6oeBqakVfP9+DmljbyagMpedpfEsGvgE2//Xmzlz8hk9utLbw5UT1OGBevO91e2srV2sNHzwBL76n4O/3VLAP6etwnf3cvz3biDG7yCjIlcxKnIVANVf+ZBemMwf+w9j1bxBRAclsGVPgPv49QP12FjXEY8VqouIiLSOHTt2cMMNN7iDtLoq5uHDh3PRRRfx2muv8dBDD3l0DOPGjWPcuHGNPnfbbbcdsW3AgAHMmDGj2WOOHDmyQbDudXWh9v49mM5qDHtt//U86w0CIzzyuA5vOHytXuhrV2Cm/4hxeIju7onuiUr0gZgAu7djVpRj+Ac03KGVqu0BjB4J1gKne3fCqWccuUNFubXf4WPwMuOkFMy0tzEz1h+5yG1FOdTUfhK0FdrQHHUsF0/CXPwR5OVA1j6Iiz+u45mmifmFtW6Sce6EBgvntgV9hlVERKST2rTJwezZISxZ4kfZ5h28PfJGAipzKQruxeXf/x+xA7owfXoxo0dXKhyUdqt+K5jD28BERsFPxYmEXXoFJVfezylffsoXZ73C/nOnstQ1jj1lXXHYahgesZ6b+77KVPu9JL14Bf3evI2HBjxB/pfL2L3eCuzrqtQPV78VjNrAiIiI/HylpaUEBwdjs9nw8fGhtPRQG8E+ffqwY8cOL46uE4mMsaqja5ywf/eh7Qeza5+PPu5TGINOBsBcv/LIJ8s92M6lSxSEd7EWHN3byPVSXFttH3r8ITo9EgCsBVobUxui085CdPqcBHa7Va2dc6Dhc3VV6A5fDD8/jw/F8POzPj0AmBvXHP8Bd26xeuL7+mKcMfb4j3eM9BuAiIhIJ5WWZrWw+PcDexm57G6i/PJJLzyJM997mazKaJYt82/Qp1qkvWuqt3rXrnV7GHQbGkePK8+j5rfTGf3Vh3w+ZgHfJ9/Ha7snsq2kJzbDZGBoBtf2fpPRGx5m/OJfs/isX1Lx8vOsmLOU7z6wfrlIT3eot7qIiEgr6tKlC0VF1v+zcXFxbNx4qCXH7t278fdvm8UBOzvDMA4FwPVauph5OdadLjHHf47BVojOts2YpYc+QWia5qGe6J5o5wJWmxXA3HVYu5qy0kMBfliX4z6N0b23daeDheiGnx/0tha2NTevb/hkG/RDP2I8A4ZaY2mFEN1c8Y11zCGnYQS1fRsdtXMRERHpRLKybGzaZCctLYDo6BpGdfmRV0dNw9es4Ie8IWw492GevbWGtDQtIiodX2ysi7vuKqFr1xCyslwNq9QjraA9PiUSOJv7Zv2KOXPycXbLZvGL2/Dfu57TuqzmpJCt9AveRT92wbr/cjIwfkw3Vrw6jFfyhrE8bzgQTnq6A39/62PnLemtLiIiIg3179+fjIwMRowYwRlnnMHbb79NQUEBdrudr776ijPPPNPbQ+w0jJ59MDenQ/2+6LWV6EZkK4TokTHQrSfs3425YTXGiLOsJ6oqwVX7c5CHQnSjV1/MdT/A7m0Nn8jeb92GRWAEBB7/ieJ7W7d5uZilJQ1CW7OmBqqrrAftLEQHMPoPwty6ETLWw5n1KrZLakP0oLZbDNU4KcVqwbNt05HtZY6B6arBrF2g1Djt7NYb4DFQiC4iItKJLFgQxOzZ1g9F50R/x7xT78XXrOTb3BHcsHIWl/V1cf1thYwZox7o0rk030vdqhxPTHQyYHAI2RWnMWlSKnPm5LO5uJgPn9rJLb9YTj9zLWGFGfQM3E/PwP38Kv5jALIrIlm+cDjL84fRP2Q48+Z2IzLSbLRKXb3URUREGnfZZZeRn58PwKWXXkpBQQHfffcdhmEwatQofvvb33p5hJ1IbZ9yc48Vopsul7snemu0cwGrGt3cvxvSV0JdiF5XhW6zWYuPesChhVMbhuhmVm2IHtutdc4TGGS1xjmYDft2QtKgQ0/WVaFD+wzRkwZhfvzWEX3RzTZaVLSB+ATwsVsBfl6O9TX9OXZutRazDQiCgcNad4wtpBBdRESkE5k8uZSEBCefPrKSZ4f/GR+c7IsaRcHYP1O+IoDU1FxvD1GkTRweqjdWpZ6Y6AQCmJp9FnddnUzU4GrWr3Ty9+v285crlxFfvhbffRnE+B/kom6LuKjbIgAKqkJZ8aehrMsbTkrYMNavjcMv0Grpoip1ERGRxsXFxREXFweAzWbjuuuu47rrrvPyqDono4cVNLNnpxWgFxeCsxoMGxznwqLucww+BfOz9zDXr8R0uTBstgatXH5uxfFR1bZzYf9uzOoqa6FTsBauBIzY7q13rrjucDAbM2s/RmMhut2BYXe4F8ltN/qeZAXXebmQmwXR1t+7unYuRltWojsc0L2n9amInVt/doju7r8/YMihxXLbmEJ0ERGRTmD9ejvz5weRmlpO7M4veXbYTHxw8f7+cdjGTSPxJJPp04tJTnZ6e6giba4lVep1TN8Avs0dSc2FfQkdfAVff2nw1NRM/nb1EsJz0wnN2Ui4bxFjY79hbKzVl7Hky0BW5qfw+77D+G7eIKLC4tmyQ1XqIiIi4iVx3cHhC5XlkH0Aykqs7eFdMOytFAX2TbaqsEuKYNdWSEiCIuuTBgR5sOd2RCSEhFlvDOzdaZ0XoJUr0QGMmK6YG1YfuUBnbYhuC2yFtjEeYPj5Q+9+sO0nzIz1GHUhev5B6zb8+HvGH9N4evXD3L0dc9dWjJNP/1nHMNevso5Vu6itNyhEFxER6QTmzw9i4cIgKr/6H/9ImYHNMHl9zyXcn/5HXFN9mD69uEGIKHIia65KvX7ADtAlxs6K/GGYF8STzxWMviCCVx7+gZN81nDgm59IqFlHmKOYs6O/5+zo7wGomONHXv5gpvUbTuY3SZTGJAMtq1JXwC4iIiLHy/DxsXp678iobelSWxXeSq1cACuMHzAMVi3FTP8RIyEJM7s2bI7p2vyLj+e8hgG9+sL6VZi7tmHUhuh17VyMVgzRielWe+zDQ/Qy61wBHlo8tRUYSYMwt/0Em9fD6F9YG92Ly7beddAi7sVgtx1lx8aZpcWwcwsAxsDhrTasY6UQXUREpIOqH7alplZQ/fUXPJHydwxMXt31Syom3syVKRWkplaQnFzt7eGKtEuHB+pHq1p3mnaiT+1Ht8G9yOj1a1ImRTD3kdWEZa8j85tNjOiymii/fEZH/cjoqB9hDVTWOHh75CCy56ewvbQ/20sPfRz48Cp1Va2LiIhIazB69MHckWG10fCz+pO7K5Jb6xyDT8ZctRQzfSVcfFW9liqtGGQ3dt6efa3K5Nq+6KZpHlpYtBXbuRgxXa22ONmHheiVtZXoAYG0s0YubkbSQMxP3rEWGK1l1oborbG47DGNpVc/6+u0e+vPW1x0609gmhDXHSOiddoR/RwK0UVERDqoTZsczJ4dQkKCk27bP+YfKU8BsL3XJfwp7T4W/vEgN99S6N1BinRwR+utbmIj9uSeQE9ufvpa5jyTx8CoHSydt4WwrHWM7LKKWP9cTuuyGlgN70M3lw//GTUQ3h9AYUwKQT6j3VXqh1NvdREREflZEhLhm08xN6dbLVDAWuSxFRmDhlvh6M4tmEX5hyrR2yJEB8zd1sKplJVAuVUdTlRs652orqI+50DD8Le2nYvRjkN0+iZbPfBzMjELDmKER1qLpELbV6LH9wIfn5+9uGjdGwFG32RPjK7FFKKLiIh0UGlp/gAsf+JLHh30FAAv77iSh9KmAwZpaQGMGVPlvQGKdDIt6a2emFRD/8FdOWD2ZtKk3zDnmTzs+fv5+v+2MjJyJad1WUX3gCxOiVgHu9fB7jdIP9+HnfOS+GnpIDZXDCPUPor0dGvBpC1b1FtdREREjp0x6GQr4N2RAfut3xuMHq0coodHQs8+sHs75vrVnlncszE9+1i3+3ZiOqsPhcOh4YcWGm0NUbFWEF1ZAYX57l7iZl1P9IAg2utPYEZAIPTobX1vtmyEYSOtOUCrtvVp0VgcvtCtJ+zZYfXPP+YQfZN1p59CdBEREWmhrCwbmzbZSUsLIDq6him93uDhgf8A4KXtkzB+dS0Lk/NIS/Pn6qtLvTxakc7taFXqYIXqEMstDw5i9L1nU9ivmmdml1C9cQMjI1cxsssqegbuo59tE+zYRCJvc8n5BhveT2Lpv4ezPG844Y5hpKc78Pe3ap1a0ltdRERETmxGeBfonWj1kq60flaglUN0AGPQKdaikWtXQE6mtdHDlehExUJgsFWBvn+3x3p9G3aHFTjnZlktXeoW5KxXid6eGYkDrWr9zenWtWCa1oKzIWFtP5Ze/TD37LD62A9v+eKiZnX1oX7oXg7RbV49u4iIiByTBQuCmDQpioULgyh+/0N3gP78tqv5+0/T2L7DwZgxlcycWcigQU4vj1bkxFEXqNcF2IcvUAqQmOhkcIqTCVPCeGffRfjdeAfLLpzHaYs/Ii32j+yMv4A8Rzw2w2Rw2GZuSHid/zv5btad/wuGfHAT+c+/xIVxX/CfuVWkpzsarVKvq4jPyrIxa1YIWVn6cV9EROREZQwZceiB3YERHNr65xhUu9DjqqVQU2OFtOGe7VvtXlwUa7FK86AHF8ysbQ9j1lW7gztEtwW28xA9eSiA1bO+3hsNx9yTvDW4v19bj+11+3aCsxqCQlq13/3PoUp0ERGRDmTy5FISEpykz/6IPyc/DcDGXlfRbfxkuMMgNbXcyyMUEWhhlXqi9UbXgYo4el9xJn0HjyQ93cHYSwyev/Nb+tasoXzdBrobOzkpZBsnhWxjSu+3AdjyaG+K84ZzcdfhbPmxH4RZv6yqSl1ERETqGOdciLnofSgrhUEne+YkvRPB7rCCToBuPTFsnn8T3+jZB3PTWmvhVF+rhYvhgTYlRmSM1RbnYNahje5K9KBWP1+rOinFelMjLwdz3Y/Wti5RXhmKe3HRXce2uKi7733PPt4J/+tRiC4iItIBrF9vZ/78IFJTy+m9+Q0uSX4ZgKe23EjC+MtJ6u9k+vRikpNVfS7S3rSkl3p92ZVRBJ11BtGDT+Orr/y48FobL939LeHZ63Bu2sCA0C0kBu8kMXgnk3v+B5bCjtIezBg8nM3zBhPrm8iWzEMfo1YvdRERkROTERSM7e8vYP4vDePUMz1zDocDeveD2r7VxsBhHjnPEXrWVjbv3nZo4VSPVKLX9u/ObaQSvb23c/Hzs4L09B8xP3/P2hYX753BxPf+eYuL7rFCdKOuD74XKUQXERHpAObPD2LhwiAivn+De/pbAfqsjJt4euuNcIdV5Vo/pBOR9qu5KvXD28BERrrIq4ok+MxROBnF+PHRvDBrF4P81/LTB5vpWrKWAaEZJATtISFoD/BfeAX8y7oxK2U4JZ+fRGFsChDVaJX64aE6qGpdRESkMzFCwjAuvtKz5+jT3734o+GpivfDz9mzr1XZvHeHuwreOMYFK1uki3VMs64dCnSYnugAxmlnY6bXVqH7+GCMm+idcfzMxUXNXdusO7VvmniTQnQREZF2rC7cGjWqgsjlr3NX0gsAzNh8K12u+iWTtpeSmlpBcnK1l0cqIj/H4YF6S6rWew8MJGHwKewKH82FkyJ5fvZeQrLWs/H9zZwWuYrBoT/RM3A/PQP3w08fwU/w/Tmx7H41hT0HTuJA9TDg0Ed5D2/9oqp1EREROSY96lUJ9+nfNueM6Qqh4VBUYLV0AY9UohtRte1ccg+1czErO0g7F8AYcRaUlWB++i7GxVd55o2Glo7lGBcXNV01Vk90VIkuIiIizcjKsrFkiR+zZ4fw+uRnuStpLgAbkq7nubTrWHhSLjffXOrdQYqIR7Wkt3rCAD8YcDKPzhjPnDn5BPQqIu3ZnfjuXM9pXVYxJHwD3QKy6MYiWLyIbsCP50ZS8cYg9q4bRKZzKPVD9frUW11ERESOxjj1TNi9DaPvSRg+R7aq88g5bTaMUedifvYfa4OPD0THtv6JImuPmZeL6XJZ/d47yMKiYC3CapxzIZxzobeHYi0u+t2ili8umnUAqqrA1w9iuh19fw9TiC4iItJOLVgQxOzZIUzt93+MzpsLwKM/3c4LadcAkJYWwJgxVV4coYi0pZZUqScmOhk42EHONYOYNOls5szJZ1dpJe88sYeRXVZxWpeVDAtfT4z/Qcj+GrK/piuw+rxwDr48mL2BQ0gOOZ0l31mVXFu2HPp1Qb3VRUREpDGGjw/Gr69v+/Oecb47RDcm/AYjMLj1TxLeBWw2qHFCYb7Vf72jLCzazhxaXHRbyxYXPbDbuu3ao00Wqz0ahegiIiLtTN0ioqNGVfD65GcbBOh+F13Gs4kHWbbMn6uvVhW6yImsJVXqiYlOwIelB0/lyr/2IyzxMj5cY/LmjL2MjFzFyC6rODliLZF+BUSWfktS6bece+azFHwfyopPhrI2bziDQ09m/boY/AKsX14a660OqlIXERGRtmXEdcf4ze+grAQj9XLPnMPHByKi4GA2HMyyQvTCfAB8wiI8cs5Oq3sv6w2JkiLIPwhdGv8kZB3zwF4AjK492mJ0R6UQXUREpJ2pW0Q0avlrXFzbwuXRn27nhe3XwNNWUDZzZqF3Byki7UpLq9QHD64GHKzIH85vH06gS+IlvPatwUfP7WP6RcuIL19LdNEGwn2LGBv7DWNjvwGgaFEQP+QP5dY+w/huXjJRYfFs2aEqdREREfEu23kTPH+SqFg4mI15MAf6mlCYB4BPVAzUeP70nYXh6wdde8C+XbB721FDdPbvsW67KUQXERGRWvUDp9TUCqKWv8adSS8ChyrQeRrmzMln9OhKL49WRNq75qrU69QP1R96ZAiRk7pRzi8ZfEEEcx/+gZNsazjw7SYSatYR5ijhvJglnBezBICKOb4UFQ7knqSh5HyVSEnMAEBV6iIi0j6VlJTwyiuv8OOPPwJwyimncN111xEU1Hg7DqfTyRtvvMHq1avJzs4mMDCQwYMHc9VVV9GlSxf3fn/961/ZuHFjg9eefvrpTJs2zWNzkbZndIk+tLhoSRE4nQD4RERBbq5Xx9bRGL36Ye7bhbl7G8bQ05rd18y0QnSja3xbDO2oFKKLiIi0A5s2OZg9O4SEBCd9Ni3gzqR5AGzofwMvpF3Ds4kHmT69mNGjKxVCicgxaa5KvTE1pp3oU/vRbXAvMnr/miGTwpn791WEZa/jwLebObXLGqL98jity2pO67Ia1oHLNPjkjEQy5w9m18FE9lQOAay+6qpSFxERb3vmmWc4ePAgf/rTnwB48cUXmTNnDvfdd1+j+1dVVbFjxw5++ctf0rt3b0pKSpg3bx4zZ87k8ccfb7DveeedxxVXXOF+7Ovr67mJiHdExVi3B7OtNiQAIeEYDof3xtRR9ewLS7/E3L292d1MVw3UtnOha882GNjRKUQXERFpB9LS/AHY+vQ7XFIboNdfRHTZMn+1cBGRVnG0UP3w3uoufIg5pTfQm5ufiWbOM3kMjNnNt//eSuCBDYzosoaEoD0MDM1gIBnwKcQD343pTs1bAyiMGkRS8EgO5oYAzYfqoKp1ERFpXXv37mXNmjU88sgjJCYmAnDTTTfx5z//mf3799OtW7cjXhMYGMgDDzzQYNu1117LH//4R3Jzc4mKOtSGws/Pj/DwcI/OQbwsMhYA82AORl2IHtGlmRdIU4xefa2q/u2bMV2uphcMPZgD1VVgt1vtdNoBhegiIiJekpVlY9MmO2lpAURH1zC13/81aOESPelSFp50kLQ0LSIqIp5zeKh+1N7qSTX0HxzDgZoeTJr0K+bMyWddYR6fPLuDERFrOLXLagaEbqFn4D7I3AeZi/jiLChbGETht0n4+CZzXsyp+JTFAUFHtH5R1bqIiLSmjIwMAgMD3QE6QFJSEoGBgWzevLnREL0xZWVlGIZBYGBgg+3ffvst3377LWFhYQwdOpTLL7+cgICAVp2DeJcRWdvO5WA2ZoEVohsRR+nnLY3r3Q/8A6C4EPZsh179Gt8v54B1GxVnLe7aDihEFxER8ZIFC4KYPduqzDw8QH9h+zVM2l7KzTeXMmaMeqCLiHc011s9MtIKtRMTnUAot2f+ggv+dDI+iU7umGWjcHUGp0asYUSX1QwJ20igvRT2rKY/q3nllNfgX1D+VhwhQQO4ttdw/DPjqYju0+D86q0uIiLHq6CggLCwsCO2h4WFUVBQ0KJjVFVV8dprrzF69OgGIfoZZ5xBTEwM4eHh7Nmzh9dee41du3YdUcVeX3V1NdXV1e7HhmG4Q3fDMJp8Xd1zze3TEXTIedRVQuflgDtEj7RuO9I8mtCW3xPD4Ys5YCjmqmWQvhKjd2Kj+5k5Wdb+MV1bPC5Pz0MhuoiIiJdMnlxKQoKTbU+/zfSklwBY2+dGBl5wMdwOqanlXh6hiMghzbWBcVep1y5W+pspfkxaNIrLHzyJ3RVXctU9wSQFb2d4eDpDw9czPHw9iSE78C3KpEdRJg8NXAxvgdNw8N6ok6h5I4ldGYnsK0vGwPolVb3VRUSkvrfeeot33nmn2X0ee+yxJp8zTbNFYZvT6eSpp57CNE1uuOGGBs/94he/cN/v2bMnXbt25b777mP79u306dPn8EMB8N577zUYd0JCAjNmzCA6OvqoYwGIi4tr0X7tXUeahxkdzV6bDaqr8MvcSwUQ3KMX0LHmcTRtNZeSM84jf9Uy7JvXEfu7PzS6T0FpEcVAUEI/Irp2Pabje2oeCtFFRETa2Pr1dubPDyI1tZy+m17lkqT5ADyy6Q4GXXARSUnVTJ9eTHKy08sjFRFpWsur1K3FSm99NJrExLNITz+P8+4OJ9RezJDwDQwLX8+w8HSGh68nwreQkyPSITvd3Vt949gAKub2ojg0gWt7DcS5MRozoTvZ2ZGqUhcROYGNHz+e0aNHN7tPdHQ0u3btorDwyLWFioqKGq1Qr8/pdPLkk0+Sk5PDX/7ylyNauRwuISEBHx8fMjMzmwzRJ06cyIQJE9yP64L8nJwcnM6mf/43DIO4uDgyMzMxTbPZcbRnHXYe4V0gL5eK9FUAlNr9CIOON49GtPX3xIyyQvGq3ds5cOBAo/vU7NwKQFlQKBVN7HO4o83Dbre3+M2qxihEFxERaWPz5wexcGEQ0csXMr1egP7ijqvhdiuIqh9MiYi0d8dSpV7nkSedJCb2ZcmSZK792w1MvaOI8Or9rPvvditUj1hPUvA2guzlBBX9RGTRTzw08BP4AlxfQB+/Lsw/tT8x33WjMrI3n/7fcMadG0xsrKEqdRGRE0BoaCihoaFH3S8pKYmysjK2bt1Kv35W/+UtW7ZQVlZG//79m3xdXYCemZnJgw8+SEhIyFHPtWfPHmpqappdaNThcOBwOBp9riUBpmmaHT60hQ44j179IC8XKms/LVzb4qXDzaMZbTUXMyzCulNWiquyAsPX78h9sg/1RD/WMXlqHgrRRURE2khdqDNqVEVtgG61cHlk0x3ETL6ESdtLSU2tIDm5+ihHEhFp35qrUq9zeKh+QWolEMlDz5/EufePwp7o5PZZAWz7LoeTQrZyUugW6zZkGz0D9+FfmceY6GVgFYTx6ZlgPm+jJq47jqDe+H/eG2dMEPndu/Dx0h6M/U0w0X1CMGy2tvgSiIhIOxEfH8/QoUN58cUXufHGGwF46aWXGD58eINFRadNm8ZVV13FiBEjqKmpYfbs2ezYsYN7770Xl8vl7p8eHByM3W4nMzOT7777jmHDhhESEsLevXt59dVXSUhI4KSTTvLGVMWDbKPOxbX6e+tBl2hIHODdAXVkAUFgd4CzGooKDvWcr2WaJuRkWg9ijq2ViycpRBcREWkDWVk2lizxY/bsEN6Y/CwXJ80FYEP/G3kx7WoWnpTLzTeXeneQIiIe0FyVelPqAvarp9iYtCiBqY+HU1FxKjfcHQ5AkE8p/UO2cVLIVvqHbCU5ZCsnhWwl3LcIDuwhjD3c3Odb+MY63pUAM8Blt1MTEsmBiliikroQ0C0So0s05X2TMPHBDI+E4JBOsUiYiIgccscdd/Dvf/+bRx55BICTTz6Z66+/vsE++/fvp6ysDICDBw/y448/AnDPPfc02O/BBx9k4MCB2O120tPTSUtLo6KigsjISIYPH87ll1+OTW/Ydj6DT3bfNc4ci2Hz8eJgOjbDMCAsAg5mQ2H+ESE6hflQVQmGDSJ/fvuV1qYQXUREpA0sWBDE7NkhTOv3EqfnzQVqW7ikXQ1AWloAY8ZUeXGEIiJt42ihenO91QHmzMknMdHJrFlJvLYopd6RTWL9ckgO3ULfoJ10C8hi/Ii9BFVlU5V1kFj/XAynE5/8LOLJgrVgrgUTyK13FBc28A/AFhiI0xFEVlEI0T388AsPpIwg1m8NZ8BwB6Z/IN+t7MLp5/oQ3jWAg2VBfPBJGBdNdBLV1YecfD9efyec30yqBh+fBu1lDm8309xjoEPteyKO6cUX4dJLbc2+MSQi3hUcHMwdd9zR7D5vvfWW+35MTEyDx42JiorioYceapXxSftn2B3Y7vgL5qa1GGMv9fZwOr76IfrhDmZbtxGRGPbGWx95g0J0ERERD6pbRHTUqAremPxsgwDd/+KJPJt4kGXL/Ln6alWhi8iJ6fBQvaW91adMKWXRIn/mzMmnosLg7rvDyaqMISsnhq9yrIXm/rbp0HnGn1/C3TfuJHNTPm++UMoDv99OnG8Whbvy2LU6n+S4A9jLC7HhgopSqCjFTg7dATKssD0AOBXgi9pjAiwEFxABXAMw23ocCfwe4EEwDRu/q/bF7292avwdhJq+TNjvT3CujZoQB4EVdkau9yegpIaaEPAv9SHlR3/8Kpxg2Oi/LADf6ipcEQaOIjs9/xeAnSpckWDPs9H9Cz/sWD1ae37pi92swBXmwlFgkPCVL46aQ48Tv/XFt9pajDV5iR2/ygpqgmvwL4LhP/oQUFJBTZCLgGKT0et9CCyoxDBNzs2wEXSwihq/GoLL4cKdBiFZ1dQ4agitMPllpkHY3mpq7C7Cq0wm50P4TieGaXJtCQQ+5ktNkD9BLn9OzwjFv9xOTaQv9vJAIj6LgCATlyOAovciqepWg6ufP0VFPfnnU8MYO9aH2FgX2dk+DRaTrbt/+HNHe3wsrz3avllZNh56CEaNUoguItLZGYNPwRh8ireH0TnU9kU3i/I5/PN/Zl2I3o6q0EEhuoiIiEfVX0S0roWLexHRp62Ky5kzC707SBGRdqq53urNV6mHsGiRf4NjfboomE8XDXI/PtO3gMGDq9nib+f2ZyP49NMcDGcVv/2lH2+8spukHoXs2FTFY3/x4S93Z9I9spjsnRX8900Xv7zwID6VpaxdXs0pAwsJMEqoLi6nNN9JaGAltppqMA8taGqYLgLtFVAJVIIv0C8YqwQ+FwKBkZHAXmv/YODcGGCn9fiCOGCbFeSHAZd1B36yHocDl8dbj6l7bvOhfS/pBmw59PjCrtaxAMbFATsOnfOs6ENjCAJO7QLUtiRNCQNyrPv+QGIIUFs85gv0CARKrMd2IMoPsDJowhxAqfUnABjRBdhl/QkHrukFrLT2/UsysBjMxdAH+GmcgXNuDDW9ehDj6MXl8QMJyIygMqIH0L5+uRYREZGWMcIiMKGJSnTrBw4jMqZNx3Q0CtFFREQ8KDX1yEVE/S+eCE9bYc/o0ZVeHqGISMfQXBuYllSpH+7wbZ984g/4k10ZwmuL/RgyxMnWrXbSMkNI3F1MP18na/c6+NemYArHFoMNnl4Rwg0pxe59n347hKlTi+nXz8m6NQYL5vpxxy15+JjVvPpvB1f9uoABSeXs313De285+M0vC4mPKyfrgMmnH/txYWopcbFO9uwy+PZrX8adX4qBi/996cuZZ5QR383JwRz49lsHZ59ZTnQXJ/sP+LDiBz9Gn1EFGHzzrT+nnVZJ124mubk+fP2NP2edXUlUlMm+/T4sWerPmDGVmNj4cnEAp59RRY+eJpnZDj79LJCx46uIiTPZucvBoi8CSZ1g7fv+B0GMHVdJQl+TffvtvP1uMJf9qoLu8SZ79jp4/c1grvhNBfE9TDZvcfD2u8FMmlyOadiYPz+Iq36VR3KfErL3VLPoI5NLLsine2Qp2XuqWb+qhjNOLcThKmf7JifJfYuJDigkoGgvgTUF+BZlQXoWUfzIrJR3obbDwvJzYih7sScZcT3YW55A36DT+eSTSLZssbN1q939fd2yxc7atY5632fLO+/4H/e+dY9nzQphypRSIiNdxMTUEBt76E0UEREROUyoVYneaIieV1uJ3qV9heiGaZqmtwfhDTk5OVRXV3t7GK3KMAy6du3KgQMHOEG/rXIcdP3I8dD101BdC5fU1HIilrzGoJ3zAWsR0QuevIlnnz3I9u2+7n6qJzpdP3I8dP0IcESf6vR0B+PHR/Ppp1Yl0/jx0e4q9fR0R6OhurRPXXzz6Re0g6SQ7SQG76Bf8A4Sg3cQ55/T6P5bSnrzedYYPs0cw7rCAZi0/eJ+06cXN3jDR6Qpnen/MIfDQXS0Ph1yPI6WU3WW60XzaH+8MRfXN59hvvocpJyKz+0PNHiu5pmHIf1HjN/eiu2s8S0+5tHmcbz/TqkSXUREpJXVb+EyPckK0OsvIrpsmb9auIiItKJjqVKvUxeqL1niy9/+FsbUqdbrn346hBtuqFdd/vSh6vK1ax3861/Brb5vW52nY44/glG32OnXL4G1ax08WLuvX00JXyzI4boLNjKgy04cmdvpWrqOxOCdJAbP5ba+czlQHkNW3CjKkk5n8d6TeenlcI/Nvf41pd7oIiIizWu2nUtebTuXdlaJ3vZvy4uIiHRSWVk2Zs0KYdSoCu7o968GLVz63XoxCxceZNKkUi0iKiLiYXWhemysq0GgXl9dqD56dBUAF1xQwQUXWE28f/WrCi67rNz9+IILrMe/+lW5R/Ztq/N0pvGfO8HOqoIU+l1zHv3/eDWlNz7CsC++YO/4ezFOOYMaRwBdA7IZWvhfTv/hXu7Pu5SnhjzArxO/IPUXBcc9phEjqkhMdNKv36Ge/B98EMDBgzays33IytKv2iIiIk2qXViUooIGm03TBPfCou0rRFcluoiISCvIyrKxZIkfs2eHsPC3z3NX0suA1cLlxbSrWdgtlzFjqhgzRj3QRUTaUnNV6tK5FDuDKUoag+2Xo8lYbfL4tTt4asqnROxehk9xIZd1/wTSPsHl48sLw0fjn30Z0OtnnSstzZ+FC4MabFu0yN+9oK1auoiIiDSjrid6UT6my4Vhq33zuawUKqw3s+nSvlpEKUQXERFpBQsWBDF7dgi39JnLmQetAP3xn37PP9OmAJCWFsCYMVVeHKGIiMCRoXpsrIsHH7RuTdNsELAfHrgf/thT+7bVeTrz+KO7+TDst0OoubIftuibyPshg23v/shQvsEnP4vUuP/BG/+jZsvpdB39W6ZP9z+m84wbV85vf1tGXp6N11+P5MMPretJLV1ERERaIDTMuq2pgdISCAm1HufXrnkSHIrh5+edsTVBC4t2Ip1pUQNpe7p+5HicyNdP3SKio0ZVELbiPc7OfQGAmZtvwWfCr0lMrGLZMn+uvrqUQYOcRznaielEvn7k+On6keOla+jEYpom7N2J+fl7mMu/BtMEw4YxcgzGRb/BiI5r8bGysqzWLbm50UyebG174okCd+/9mJgaLSAuzepM//5oYdHjp4VFO5bOMg/w3lxq/jAZSoqwPfgMRnxvAMz0H3E98zDEJ+Dz4NPHdDwtLCoiItKO1S0i6r/kfR4cYAXoszJu4tlt18PTVvWaFhEVERFpHwzDgB4JGNdPxxz/S1zvL4Q132MuW4y54huMM8diXPhrjPAuRz1W3afQ6rv77nD3fbV0ERERaUZYBJQUQVE+0BsAM/+g9VxEpNeG1RStdiIiInKM6hYQzcqykZpawXW9X+fBAU8C8NSWG+HC3wDWR7onT9YioiIiIu2R0b0XPrf9Edsf/wEDhkKNE/OrNFx/+h2ud17BLClq9vWTJ5fy6ac5fPopnH++teDo1KlWaK6fAURERI6idnFRsyD/0LYCK0Q32mGIrkp0ERGRY7Rpk4PZs0NISHASv/W//HXAswBs7nsVs9N+x7OJeUyfXszo0ZX6GLeIiEg7ZyQk4fOHhzE3p+N671XY9hPmZ+9hfvMZxi8uwRh7KYZ/wBGvi411ERdn0rUrQDGLFvnTr5/Vui0x0amfAURERJphhEZgQm0leq2CPOs2vP2F6KpEFxEROUZpaf4ALH/iS07eYgXoz22bwvlz/gAYLFvmz513FuuXZxERkQ7E6D8Y270zsN3+APRIgPIyzA9fxzXj3kMfL2/EgQOwZYtVn7Z1q3U7a1YIX33lR3q6g6ws/dotIiJyhLBw67YuOKdeO5cWtFVra6pEFxERaYGsLBubNtlJSwsgOrqGq3r8h0cHPQ7AC9t+i+/lk1mYnEdamrWIqIiIiHQ8hmFAyqnYBp2MuXIp5hsvwd6duB67G9sdf3EvfFbfiy/CQw9ZH0l/+mmrR/qiRf4sWmS96a7e6CIiIo0Is4Jy88sPqcnLwQgMhvUrAbVzERER6bDqLx72m/j3mZnyKAAvbZ/Eo5vvYNKOMm6+pYwxYyq9OUwRERFpBYbNhnHqGZi9++F65mHI3Itr5n3YbrkfI3lIg31vuglGjcoBID3d4V5cdM6cfBITncTE1LT18EVERNq/0PBD91d/b7V2qaN2LiIiIh3T5MmlzJmTz+XxHzAj5REAMuIvI/bWawCD1NRy7w5QREREWp0RHYftvhmQOADKy3A9/RCu7//XYJ+uXXG3cPP3PxQBVFQYAGRn+6ili4iIyGGM+iH64dphJbr+JxcREWnG+vV27rknjE2b7MTtWMQTg/+GgckrO69g06CbServZPr0YpKTnd4eqoiIiHiAERSC7Q8PY5xyBtQ4MV9+EtfHb2GahwLzV18NZPz4aG6/PcK97e67wxk/Pprx46NZsCDIG0MXERFpv3okQEAT/z8GBrftWFpAIbqIiEgz5s8PYuHCIN65ewWnbnoCm2Eyb9flPLjxLm6/owuffRagRURFREQ6OcPhi3HjXRhjJwJgvr8Ac8E/MWusVi2//W0Zn36aw8KFuZx/fgUAU6dafdDnzMln8mStlyIiIlKfERyK7Ym5MGBYw+2/mmKtUdLOqCe6iIhII7KybCxYEMSoURWU/O9bnhr6VwxMFuy+jKqJv2PS0DJSUytITq729lBFRESkDRg2G8bl1+KKjMZ84/8wv/kMV8FBXH+ZTWysy937PDKymEWL/OnXz/qUWmKiU2+2i4iINMLw88Po1gNz42oAbLf+EWPYSC+PqnGqRBcRETlMVpaNJUv8mD07BNuq73hqyF8wcLEz/gL+tP4+TkquYebMQsaMqdQvxSIiIicY27kTsN18Hzh8Mdf9SPZ9N2EWFwLWzxBbtli1alu3WrezZoXw1Vd+pKc71BtdRETkcNFxh+7HdPPeOI5ClegiIiKHWbAgiNmzQ7gw7gvG738UH5uLN/ZczL1pf8bERlpaAGPGVHl7mCIiIuIlxvBR2O78O65n/0711k0YLz+Jccdf3D9DADz9tHW7aJE/ixb5AzB9ejF33lnstXGLnKhKSkp45ZVX+PHHHwE45ZRTuO666wgKanq9gueee46vv/66wbbExEQeeeQR9+Pq6mpeffVVlixZQlVVFYMGDeKGG24gMrL9LYoo0m4F1vt7GBPX9H5ephBdRESk1vr1dubPt1q4zLn+Yy7c9zB2Ww1v753AvnOmMuemfJYt8+fqq9XXVERE5ERn9D0Jnzv/Ts2jd2GuXwmLP2Ly5EsYO9bqiZ6e7uDuu8MBqy96YqLT3fJFRNrWM888w8GDB/nTn/4EwIsvvsicOXO47777mn3d0KFDufXWW92P7faGMdrcuXNZuXIlU6dOJSQkhPnz5/P4448zY8YMbDZ98kSkJYzkoZgAXXtgOHy9PZwm6W+0iIhIrbpFRD/4WzqptQH6u3tTuXvdAzz9TBjbt/syc2YhgwY5vT1UERERaQeMHgmEXz8VAPOducRUb3MH5f7+pnu/Dz4I4OBBG9nZPmrpItLG9u7dy5o1a7j55ptJSkoiKSmJm266iVWrVrF///5mX2u32wkPD3f/CQ4Odj9XVlbG4sWLufrqq0lJSSEhIYHbb7+d3bt3s27dOk9PS6TTMMIisD0xF9sf/+HtoTRL/3uLiMgJLSvLxqxZIWRl2UhNreAXMd/w0in34bDV8N6+8ewaMx0XPsyZk8/kyapAFxERkYaCJ/waI+UUcFbjeukfvD7fzvjx0dx+e4R7n0WL/Jk0KZLx46NZsKDp9hEi0voyMjIIDAwkMTHRvS0pKYnAwEA2b97c7Gs3btzIDTfcwNSpU3nhhRcoLCx0P7d9+3ZqampISUlxb+vSpQs9e/YkIyOj9Sci0okZ4V0w/AO8PYxmqZ2LiIic0DZtcjB7dggJCU4i9i7nheF/xWY62dt1DNM/+StP31jI9OnFjB6tRURFRETkSIZhYLt2GjV/vR0O7OGGnnM479Pfc/Cgwdy5we5+6GrpIuIdBQUFhIWFHbE9LCyMgoKCJl83bNgwRo0aRVRUFNnZ2bz55ps8/PDDPP744zgcDgoKCrDb7Q2q01ty3Orqaqqrq92PDcMgICDAfb8pdc81t09HoHm0P51lLp6eh0J0ERE5oaWlWb/YvvvwRv5v+EP4+jj56MAvuP2Tv1Nj2lm2zJ+ZMwuPchQRERE5kRkhYdiunYbrqQcJWP4x8f2GQ+TpXHxxuTtEr6iwfqnPzvYB0JvzIsfprbfe4p133ml2n8cee6zJ50zTbDZsO/300933e/bsSd++fbn11ltZtWoVp512WrPHbc57773XYNwJCQnMmDGD6OjoZl9XJy6u/S68eCw0j/ans8zFU/NQiC4iIiecrCwbmzbZSUsLIDq6htGRK/j3iLuwm9WkHTiXzAvvZv5dhaSlaRFRERERaRlj4DCM8y/BXPRfHG88zTWfn05W5aGWLnWLjAJMn17MnXcWe2GUIp3H+PHjGT16dLP7REdHs2vXrgZtWOoUFRU1WqHelIiICKKjozlw4AAA4eHhOJ1OSkpKGlSjFxUV0b9//yaPM3HiRCZMmOB+XBfk5+Tk4HQ2vfaSYRjExcWRmZl51KC+PdM82p/OMpejzcNut7f4zarGKEQXEZETzoIFQcyeHQLAiIhVvDriD9jNaj7LPJvfr3mUKwZUctMthYwZU+nlkYqIiEhHYky8GvOndQTs2cH/pvyR1Wc+wtx5oSxa5M/UqcU8/XQIc+bkM3q0fsYQOV6hoaGEhoYedb+kpCTKysrYunUr/fr1A2DLli2UlZU1G3Yfrri4mIMHDxIRYb051qdPH3x8fFi3bp27aj0/P5/du3czadKkJo/jcDhwOByNPteSANM0zQ4ddNbRPNqfzjIXT81DC4uKiMgJZ/LkUubMyWdYeDqvnT6VAJ9K9ncZQdXV9+A07aSmlnt7iCIiItIBGQ4HthvvBl9fgves5qyqt90V5/36WRWmiYlOtXIRaUPx8fEMHTqUF198kYyMDDIyMnjxxRcZPnw43bp1c+83bdo0VqxYAUBFRQXz588nIyOD7OxsNmzYwIwZMwgJCWHEiBEABAYGcu655/Lqq6+Snp7Ojh07mDNnDj179myw2KiIdA6qRBcRkRPG+vV25s8PIjW1nICcLcw/9R58zXK+yx1B/ti/0C/ZYPr0YpKTm/4YpYiIiEhzjK7xGFfciPnqc7jee5Xs00YA0Wzdav36PWtWCFOmlBIZ6SImpkaBukgbuOOOO/j3v//NI488AsDJJ5/M9ddf32Cf/fv3U1ZWBoDNZmPPnj188803lJaWEhERwcCBA5k2bZp7EVCAa665Bh8fH5588kmqqqoYNGgQ9957Lzbbsdes2u0ti+haul97p3m0P51lLk3N43jnZ5idoU7/Z8jJyWmwGnJnYBgGXbt25cCBA53i4xfStnT9yPHoKNfPPfeEsXBhECeFbOHN024mwreQ5XnDuPqHZyivCVB/Ui/pKNePtE+6fuR46RqS49HU9WOaJq7nH4PV3/P9weH8evmLwJELGOpnjxNbZ/r3x+FwHFevYRGR9k7tXEREpFPLyrIxa1YIWVk2UlMr6Be0gw/Pu4UI30JW5g9m07kPc9lvXCxceJDJk7WIqIiIiBw/wzCw/eZ3mHYHIyNX8e0Ln/LEEwXu5+fMyefTT3P0s4eItFh5eTn33nsv5eUdu/Wk5tH+dJa5eHoeCtFFRKRT27TJwezZISxZ4kfR1gO8ftot+FUVUBCayDU/PEPfgQ5mzrQWEdXHqUVERKS1GF2isJ2TCkDMsrn4+9W4n6uosKrSs7N9yMrSr+UicnSmabJjx44O/6kFzaP96Sxz8fQ89L+1iIh0amlp/gDMvKeMYV/dS6x/LpuK+nHWu89T5AwhLS3gKEcQERER+XmMCy6n0hZIQM42Pnt0lXv73XeHM358NOPHR7NgQZAXRygiIiIt0Tk6xouIiNSTlWVj0yY7aWkBREfX0NU/k4/Pv5lwZxZbSnrz4xmP89wtNaSllXL11foYtYiIiHiGERKKc8xE/BYv5B9nP4szbxSfLgoGrJYuiYlOYmJqjnIUERER8TaF6CIi0uksWBDE7NkhAMT45fLWyFsJdx5gR2kPrlr+PL/oEciU260WLiIiIiKeFDLxIlw/fERg8T7+Ou4/fLroagASE50MHlzt5dGJSEfhcDj41a9+hcPh8PZQjovm0f50lrl4eh5q5yIiIp3O5MmlzJmTT6RvHp9dcBN9gnZT4h9HxoWPk1UZTWpqx14wRURERDoOwz+QkjN/DUDEktfws1UAsGSJL/fcE8ZXX/mpL7qIHJXD4eDXv/51pwg6NY/2pbPMxdPz0P/UIiLSaaxfb+eee8LYtMmOq7iYhSNuI7JqF/vLY1l22kx6Dolg+vRikpOd3h6qiIiInEBe2for9pXHElCZy9W93gHgb38LY+HCICZNilRfdBERkXZOIbqIiHQa8+cHsXBhEDdf40/fj//EgNAtZFdEcuWKf3L9vQP47LMA7ryzmNhYl7eHKiIiIieQK6+uhouuAuCelH8TYi9h6tRiwOqNPnmy1mgRERFpzxSii4hIh5eVZWPWrBBGjaogyKeUb399KylhmzhYGc7Xw2dy+qVRLFx4UL+gioiIiFfExrro8auzcEbH41ddxI0JC9zPffBBAJs2OUhPd6iti4iISDul/6FFRKRDy8qysWSJH7Nnh7Bjs4tXTvkDXQo2UuUI4aoV/yRuWHdmzrQWEVUFuoiIiHiL4ePDp44bALgxYSELnrcWFV20yJ9JkyIZPz5abV1ERETaKbu3ByAiInI8FiwIYvbsEPxslQxf/iAjo1ZRVB3EVUueY1NxEmlppYwZU+XtYYqIiIgw8paTKX4ykZC8Lcyb9H9MeOVewGrpkpjoJCamxssjFJH26LPPPuODDz6goKCA+Ph4pkyZQnJysreH1aS33nqLd955p8G2sLAw/u///g8A0zR5++23+fLLLykpKSExMZHrr7+eHj16eGO4DWzcuJEPPviAHTt2kJ+fz1133cWIESPcz7dk7NXV1bz66qssWbKEqqoqBg0axA033EBkZGS7mcdzzz3H119/3eA1iYmJPPLII+1qHu+99x4rVqxg3759+Pr6kpSUxOTJk+nWrZt7n7b6nqgSXUREOqS6RUT79KniD3fk8cLwezgzagWlzgA+SpjB7x6JZdKkUq6+Wi1cREREpH2IjTNxXWj1Rk/O/ZgQewkAFRUGANnZPmrpIiINLF26lLlz53LZZZcxY8YMkpOTefTRR8nNzfX20JrVo0cPXnrpJfefWbNmuZ/773//y8cff8x1113HY489Rnh4OH//+98pLy/34ogtlZWV9O7dm+uuu67R51sy9rlz57JixQqmTp3Kww8/TEVFBY8//jguV9t9Mvpo8wAYOnRog+/R/fff3+D59jCPjRs3Mm7cOB555BH+/Oc/43K5+Pvf/05FRYV7n7b6nuh/ZxER6ZDqFhGddnsYJ333GOfFLKG8xo8pPz7FfS+NZPt2X2bOLGTQIKe3hyoiIiLi9sqKs/h/9u48PKr6bOP490wm+74HCGENGDGIoohiFaFARFyw7omK1tYF0Raqllpbra0ttVAp2vZ1BQ2uIIoWETfcUHEHZZVFBMJkIfs+mfP+cTIDkQCBLLPk/lxXrtnOzHkOGZLJM8/cv02V/QluqiE3YzEAt90WR05OsiJdROQAr776KmPGjGHs2LGeKfSkpCRWrFjh7dIOyWazERcX5/mKiYkBrKnhZcuWMXnyZE455RQyMjKYOnUq9fX1fPDBB16uGk444QQuu+wyTjnllANua0vtNTU1vP3221x11VUMHTqUfv36MW3aNHbs2MGaNWt84jjc7HZ7i+9RVFSU5zZfOY4777yT0aNH07t3b/r27ctNN91EcXExW7duBbr2e6ImuoiI+A33AqIOh42JE+uw0cR71/6Ws9Peoa4phFcz/sIne4czb16pFhEVERERn5R3ZS2Rk88H4MbBzxBsWNno8+aVsnx5kV7DiIiH0+lk69atHH/88S2uHzp0KBs3bvRSVW2zZ88err/+eqZOncoDDzyAw+EAoLCwkLKyshbHFBwczLHHHuvzx9SW2rdu3UpTUxNDhw71bJOQkEBGRgabNm3q8poPZd26dVx33XXceuut/Pe//6W8vNxzm68eR01NDYCn4d+V3xM10UVExG+sXx/MnDnRfPhhKLt3Gfxj6J9IL1iJy7Bzwxd/J/T4bKZPr2TUKC0iKiIiIr4pNdVF7wtPh9gE4o1izu/5OgCZmU6ysxv1GkZEPCoqKnC5XMTGxra4PjY2lrKyMu8U1QaZmZlMnTqVO++8k+uvv56ysjJ+//vfU1lZ6am7tWPav4nri9pSe1lZGXa7vcVUt3sbX/qenXDCCdxyyy384Q9/4Morr2TLli386U9/orHRemPXF4/DNE0WLFjAMcccQ0ZGBtC13xM10UVExG8sWxYGwLRpcTQ9+R8uSv8fTlcQ13/2V94uOp2PPgpjxoxK/fEpIiIiPq1wbyiOIdY0+i/7PwWYfPhhCLffHsvKlaHKRReRFgzDaNN1vuKEE05g5MiRZGRkMHToUH77298CtFjI8sf1m6bZpTW2x9HU7mvHd9ppp3HiiSeSkZHBSSedxO9+9zt2797NF198ccj7efM4HnvsMXbs2MGtt956wG1d8T3Rb2YREfFpDoeNlSutPyqTk5sAkyVX/I0rMpbQZNp4d8BMrpozVIuIioiIiN/Iz49k7N1XUeWM4JjoLYxOXsW998aycGEkubmJykUXEQBiYmKw2WwHTMuWl5cfMHnry8LCwsjIyKCgoIC4uDiAA46poqLC54+pLbXHxcXhdDqpqqo6YBv3/X1RfHw8ycnJFBQUAL53HI8//jiff/45f/zjH0lMTPRc35XfEzXRRUTEp+XnR5Kbm8TChZE88EAMvxr4CMPLmhfhWvMH3iwbx+jR9VpEVERERPxGXl41z79aR/3JOQBc3+8pbr21EkBru4iIh91up3///gcsfrhmzRoGDx7spaqOXGNjI7t27SI+Pp6UlBTi4uJaHJPT6WTdunU+f0xtqb1///4EBQW12Ka0tJQdO3YwaNCgLq+5rSorKykpKSE+Ph7wneMwTZPHHnuMTz75hD/84Q+kpKS0uL0rvyf2dh6LiIhIp8rLq6ZfPyfTpsUz/6onGFP8MABrsqayaNkkFk4s9nKFIiIiIkcmNdVFaqqLopBzcX31MqOSPmNr3UbgJOrqDAoLgygsDCIlpUkxdSLd3KRJk5g3bx79+/dn0KBBvPnmmxQXFzNu3Dhvl3ZQTz75JCeddBJJSUmUl5ezePFiamtrOfPMMzEMg4kTJ7JkyRJ69OhBWloaS5YsITQ0lNNPP93bpVNXV8eePXs8lwsLC9m+fTtRUVEkJSUdtvaIiAjGjBnDU089RXR0NFFRUTz11FOeaBtfOI6oqCief/55Ro4cSVxcHEVFRTzzzDNER0czYsQInzqOxx57jA8++IDbb7+d8PBwz8R5REQEISEhbXo+ddSxqIkuIiI+6Ztv7Dz5ZCQTJ9ZSV2dwUa9XGVP8EADrB15F8PhzmG5WkpWl6XMRERHxT0++2peMneO5sNdrxHzyInASt90W57l9+vRKZsyo9Fp9IuJ9p512GpWVlSxevJjS0lJ69+7NzJkzSU5O9nZpB7V3717mzp1LRUUFMTExZGZm8pe//MVT8/nnn09DQwOPPvoo1dXVDBw4kDvvvJPw8HAvVw5btmzhnnvu8Vx+8sknATjzzDOZOnVqm2q/+uqrCQoK4p///CcNDQ0cd9xx3HHHHdhsXRcIcqjj+MUvfsEPP/zAe++9R3V1NfHx8QwZMoRf/epXPnccK1asAODuu+9ucf1NN93E6NGjgbY9nzriWAzT15Ltu0hRUZFnxdlAYRgGPXr0oKCgwOcWLBDfp+ePtEdnPH9uv93KBQUYn7qS/55wB3ZbE49uu5w/rZ/O9OlV+qMyQOjnj7SHnj/SXnoOSXu09/njcNjYsWoHJy67CRc2Tn/nJXbW9mTevFIyM52aRA9wgfTzJzg42KebuiIi7aVMdBER8RkOh43Zs6NxOGxMnFgHwDN/fIv/O2kmdlsTGxMnsPWEX7Jw4V5lhYqIiIjfS011cfLkdDh2GDZcXNf3aQAyM51kZzeqgS4iIuIj1EQXERGfsX59MHPmRPPhh6Hs3h3EsNhvGPHFHwkyG1m25ywKx9/CrPsrGT26Xn9UioiISEBwOGx8P+hiAC7r/RKxweXMnh3NypWhrF0bjMOhP9tFRES8Tb+NRUTEZyxbFgbAtGnxPHJPMU+efAvBTXW8XzyCW776C8uWR3m5QhEREZGOlZ8fyU9+OZ51FZlE2Ou4NH0pb7wRRm5uIjk5yeTnR3q7RBERkW5PC4uKiIhXORw21q+3s2xZOMnJTQD84aaNXPbDLUQ1VeCIzMJ2ye+4+I1GrrpKES4iIiISWPLyqhk/vo64b8+Btx7gqj4v8Oi2K5g7r8KTiy4iIiLepSa6iIh4VX5+JHPmRHsup4YWMX7d7URFlLChcgDPx/6de8aZnDGu3ItVioiIiHQOd0RdkXM0Se89RkbEbsamvE9h4Ql8/HFE8zoxykcXERHxJsW5iIiIV+XlVTNvXikAd9y8k/wRU8mI2EVVRE/yVj/EWZOCvVyhiIiISOfKz49kwqR0HtswGYBr+j7PvffGsnBhJLm5iYp0ERER8TI10UVExCu++cbO7bfHsn69nbo6g1BbHZN338ng6K3UhSaw55I/kzc1lKwsp7dLFREREelUeXnVLF9exPDpY3GZNk5PWs09N6wFYN68UvLyFGknIiLiTYpzERERr3jyyUgWLrS+bDTx7xN/S8+6bylvjOZn7/2HSf1SmDGj0ttlioiIiHS61FQXqakuHCmJ7Pn4VHo6PuSE8iVANnV1BoWFQRQWBpGS0qRYFxERES/QJLqIiHQph8PG7NnRnHpqHWBNV73+y78zMe0dmoxgnov/M3/8vzhNXImIiEi3k58fya9evhKAQSUriLFXctttceTkJJOTk6xYFxERES/RJLqIiHQZh8PGhx+GMmdONLfeak2Z9968hME7FwOw+bTp3DilH1DvxSpFREREvCMvr5rhJ/Zhz7P9SLNv45LeL/PotjzmzSslM9NJSkqTt0sUERHpljSJLiIiXSY/P5Jp0+IBmDs3mgmp7zBs838A+OuGm1mwbqI3yxMRERHxqtRUF6PPaqRH7tkAXJ3xAjaayMx0kp3dqCgXERERL1ETXUREOp17EdH+/Rs8E+gzJn/KvGG/x2aYbM84h4qRF3HVVYpwERERke7N4bCxLmocDcHR9IncxZiUD/nwwxBuvz2WlStDcTj0Z7yIiEhX029fERHpdO5FRG++OZG5c6PpE7GTvIqZhAXV81bh6bwc/mv+fn8Fxx3n9HapIiIiIl6Vnx/JhHN78/jGCwCY0uc57r03loULI8nNTVQuuoiIiBeoiS4iIp3CvYCow2Fj4sR9i4jO/cv3LDj5FhJDy1hTnkVt7u3kXlnn5WpFREREfENeXjXLlxcx9k9jcWHjjORPuOfGbwDrtZQWXxcREel6aqKLiEinWL8+mDlzovnww1B27w4CoLG6gTO+vYv+kTuoCU/l4+F/ZuSZNuV7ioiIiDRLTXWRnd1I/MAkHCkjATihbAkAdXUGhYVBrF0brFgXERGRLmT3dgEiIhKYli0LA/AsJGrgIuK52ST2WEd5YzSPxfyd2+4IBtRAFxEREfmx/PxIVr+Sy9OnrGJA8ZtEBk3nttviPLdPn17JjBmV3itQRESkG1ETXUREOozDYWPduiCWLQsnObkJwLOQaPTrjzKxx9u4bME8G/8Xzr4mGVAGuoiIiEhr8vKqGX5iP4qe7U1y8A9M7vUa+TsuYt68UjIznaSkNHm7RBERkW5DTXQREekwTz0VwZw50S2umzs3msvSX2LG0IUABF17Czed0hc10EVEREQOLjXVRWqqC5dzPObzj5GXsZj8HT8jM9NJdnajt8sTERHpVvyqib5kyRJWr17Nrl27CAkJYdCgQeTl5dGzZ09vlyYiIsCVV9bQr5+TadPiufXWSubOjeaRP3zGT7+YBS7YfvzVDDjlTG+XKSIiIuIXHA4bxXETGGjL59iYzZwU/zWzZx/DlCnVJCa6SElp0toyIgGitLQUp/PQg0bJyckUFRV1UUWdR8fhW7rLcdjtduLj44/68f2qib5u3TomTJjAgAEDaGpq4tlnn+XPf/4zc+bMISwszNvliYh0W998Y+fuu2H0aDt1dYbn+mh7FaPW/YkgVyNbok4j9mc/816RIiIiIn4mPz+SOXPS+Hv2BC7rvZS8jMX86o17eeMN6+9f5aKLBA6n00lj48E/ZWIYhmc70zS7qqwOp+PwLTqOtvOrJvqdd97Z4vJNN93Eddddx9atWzn22GO9VJWIiCxYEMHChfDww4me6+bOjeK/J9xBVM1uKuypZP55KkakF4sUERER8TN5edWMH19HmGMsPLeUc9Le5N71v+bu2YZy0UVERLqQzdsFtEdNTQ0AUVFRXq5ERKR7mzixDoB580q5//4yAJ69fn7zQqJ2XNfdjhEZfYhHEBEREZEfS021IlvqUgdRGjuY0KBGLk1fSmGhjaeeimD9+mAcDr/+s15ERMQv+NUk+v5M02TBggUcc8wxZGRkHHS7xsbGFh+HMQyD8PBwz/lA4j6eQDsu6Rp6/siRcjhsrF9v53//C2PAAGsKqr7eRliYi2Gx3zBy1/8BYL/0WpJOGuTNUsXH6eePtIeeP9Jeeg5Je3TF88eKdInmol6XMef4e7gi40XOuPdKXASxcGEk06dX8pvfVHXa/qXz6OePiIj/MEw/Dbx59NFH+fLLL/nTn/5EYmLiQbd7/vnnWbRokedyv379mDVrVleUKCIS0O6+G+6558Dr44LLWHZ6Hunhewg//ack/vav+sNARERE5CgVFFhfxQV1ZPx7IpFU8NqAB7h+3unk58OYMdCjh7erFJH2KioqOmwmeo8ePSgoKPD77Godh+/oTscRHBxMcnLyUe/DLyfRH3/8cT7//HPuueeeQzbQASZPnsykSZM8l92NnKKiosOueuxvDMMgLS2NPXv2+PUTX7xDzx85UhdcYCMpKYRp0+L51a8qeeCBaP5xfyk/3XgnCbv30BDXk6BLf8GePXu8Xar4OP38kfbQ80faS88haY+uev706AE2m42CvuMYuH0xgwueAU6noKCMNWsaWbPGin5JTXV1Wg3S8QLp54/dbm9Xc0pExNf5VRPdNE0ef/xxVq9ezd13301KSsph7xMcHExwcPBBHy8QmaYZsMcmnU/PHzkch8NGYWEQJSUGS5da8Vjup8yQXc+SsHs12IMJu+UOCAvX80naTD9/pD30/JH20nNI2qMrnj9PPRXBi/NzeW/0YvpWr6Z3+C5uu62X5/bp0yuZMaOyU2uQzqGfP+IPzPJSzI/fwdyyAaNHBsbYczBi4r1dlkiX8asm+mOPPcYHH3zA7bffTnh4OGVlZQBEREQQEhLi3eJERLoJdy7n/ubOjWZE/BcM3jAfbGBccT1G737eKVBEREQkAOXlVTN8eASbnzuJTOdn5Ga8yN82TmPevFIyM52kpDR5u0QRCUBmYyPmsucxX1sMTVaig/nlx5hffIjtjlkYUTFerrB9zKYmKPgBKsuhrhaCQyAqGnpmYISEds4+62qhqQmCgyE4RPGnfsKvmugrVqwA4O67725x/U033cTo0aO7viARkW4oL6+a8ePr2LzZzrRp1uTBfb/dxvnf/A67q4m6YWcRcfo4L1cpIiIiElisuJYGzNjxuP79GZemv8yczdeTmekkO/vgOcoiIm1lulxWQ7miDJqaMCtKMZe/aF0HMOAYjGOHYb73OuzZhfnMIxi/mOHVmo+WubcI838vYH76HtTWHLhBSCjG5DxsPz2/Y/ZXUoj5+hLMrz6B0uJ9N0TFWA37nhmQ3tcaRuvVFyO0cxr4cvT8qon+/PPPe7sEEZFuzR3lAlBXZ71bbqOJCbvuI9pVjDMlg4jrbtQ76SIiIiKdwOGwUWg7jX5hySRSxMS0t5g9+yymTKkmMdFFSkqTctFFjtK6detYunQp27Zto7S0lN/85jeMGDHisPdZsGABO3fuJD4+nvPOO4/x48d3UcUdxzRNzE/fx3zxSSgpPHCD6FhsV1wPw0dhGAbm0JNx/WWGdZ/zL8dI6XlE+2sqL8W1+n3MTd9gFvwAjt1QWw0NDRAeATFxkJyGkdYL0tIxktMwix1QWIBx7DCMrOPbdbyuTz/AXPAvqK+zrggLh4Rk67ShHsr2QlUF5nOPYaamY2QPb9/+Pn4H88mHoLHhwBurKmDTN5ibvgHABDBskNoDo3d/SO0JCckYicmQkAIxsRAWgWGztaumtjLr62DbJszSEqipBpsBoeEYYWEQGW19r2LiICIq4PsAftVEFxER72otyuWavs+SXPIlNc4wXoj8E9eGhnmpOhEREZHA5n4tdsvAn/GbQf/lqowXuPCNs3njDev1l3LRRY5efX09ffv25ayzzmL27NmH3b6wsJC//vWvjB07lmnTprFx40YeffRRYmJiGDlyZBdU3HHMV57BfOVZ60JomNVQDg4GezDGkBMxxpzTIrbF6JsJxw2Hbz7HfPMVjCuub9t+vvkc1zv/Y/c3X4DrIG/41VRZX3t2Yq79zLrf/o+xfDHGuZdjO+/yozlUq6H92D+tCwOzsJ2fC4OGYNiC9u3DNDGfegjz/RW4Xngc23EnHnWD2PXRO5iPN+9v0BBsORfBwCzr37ehAYr2YO7eAbu2Y+7cDju3Q3mpNem/Z9e+mvZ/UMOAsAjrDYeQULAHg90OwcEYA4/FmHAhRmTUUdULzWtIfvUJrrdege/WWdEzP97mx1cE2SE6FlJ6WG90nDEBIzr2qGvwRWqii4hIm+XlVdOvn5Np0+K59dZKFj9cyW+z/gNA04XTmXRKMqA8ThEREZHO4I7Vs1f/BNfjj3BSwhqyojdx033JykUXaacTTjiBE044oc3br1ixgqSkJKZMmQJAeno6W7Zs4ZVXXvGrJrr51ceeBrox8RKMcy5uUxa4bcwkXN98jvnFR5iX/eKwk9Hm56tw/fdv+65I74txzFDIGGBNnEdGW3nktdVQXopZWGA10vfshCIHxCdiRMda0+/Lnscc8ROMtPQjO9btmzHnz7OO9ayJGJf9okXz3M0wDLjoGsyP3rGibH7YBhn9j2hfAObObZhPNu9v7LkYl/y85b+TPRj6DMDoM6Dl/cpL4YdtmDu3QZEDc28hlBTB3iJret40rX+n2uoD97l5HeaXH2P7/RyMoxhwM6urcD02B5rfwAAgIQnS0q2mPVjZ8XW1UF0J5WVWHU1OKCuBshLrEwZvvIztuukYx7Vvit+XqIkuIiJtlprqIjPTWkxm4IBG/jLkb4QadTBoCFm/uIA9DgfmAW9Ji4iIiEhHcEe1FBYmUJA6il573uPKPouoq7up+fqgFtuJSOfZvHkzQ4cObXHdsGHDeOedd3A6ndjtrbfcGhsbaWzct46BYRiEh4d7zh+M+7bDTUSbu77H3LMT47jhbWqiuj79wHrcsyYSdOGVh93e49jjraZq+V6M7ZsxBhxz6P28+5q1n+GnkXr9DEqCQq2J5wMkQa8+cOywVh+nqb4Wc81nmK88i+2Xt7W5XNPpxLVgHjQ5MU44Fdvl1x+y8W9ERmEefzLm56swP30f248a3Yf7fpguF678/4LTiXH8CGyXXtfmCBYjLgHiEqCVGBmzscGKVamtgZoqzIYGaGqERidUV+B68SnrzYcXHsd25dTD72u/4zArynDd/zvrjQO7HWPcBdjOmICRnHbIxzAbG6wc/fIyzJ3brAn2Xd/jevAv2G65C9uQE9t03O3R1v8f7aEmuoiIHJbDYWP9ejvLloXTv7/VRLd/9R5npayiyQimYuI0endRJpuIiIhId+aOdBmZcAXPj3yPyT1f4+SZt1DljAMU6SLSVcrKyoiNbRlXERsbS1NTE5WVlcTHx7d6vyVLlrBo0SLP5X79+jFr1iySk5PbtN+0tIM3NCuX5FP26AMAhB4/guR7/4URdPDWn+lysXvjWkwgKecCwnr0aFMNbiUjfkLNu68TsWktcaefddDtnMWFFGxYY9V/0x3Y03px6LbswdVfM43CX18NX68mNSEeWxunrav+t4jSnduxxcSSdtufCIpt/fuzv5px51Hy+SqC1n1Jjx4zW93mYN+Pmg/fpmTLeoywcNKm/xF7Umqb6myvuswsin53A+YHb5By3a8ISkhq0/1SExMovH8mTQU/EJSYQtLdDxDSf9AR7LlP8+mZmBdeQck//kDtB29i/t/fSX7oWewpR/bcOlqH+v/RXmqii4jIYf04Cz0uuIxTvn8IQuGfG3+OfflgZo/zYoEiIiIi3YQ70qWkuA+7F/alp30783Jf5JoFVzFvXimjRtV7u0SRbuPHU6/uyepDTcNOnjyZSZMmHfAYRUVFOJ3OQ+4rLS2NPXv2tDrBbe76nqYnHvRcrv96NbufeAjbOZcc9DHNH7bhKi+FkFD2xiZhFBQcdNvWuDKPg3dfp/LzVdSeffHBt3vrFSuCZEAWxQSRBgc9jsMxo+IhIQlzbzEFby/HNuyUw9/H2UjTs49ZF865lMKaOqg5/LGaydaCqc4ftrF72xaMsAjPbYf7fjife9w6M2YSRY0uOMJ/26OW0gsGZMGW9exZnI9t0qWH3Nx9HLsfeQDXhrUQEQW/voeS8Oh21Wzm3QQFOzG3bGDPrDsJ+s1fjvqx2uJw3w8Au93e5jerWqOxQREROay8vGrmzSsF4NZbK/l91lySQkupS+jDxLkTufLKGi9XKCIiItI9pKa6yM5uZPRZjRijcwA4ufZlwCQz06koF5EuEhcXR1lZWYvrKioqCAoKIirq4Is6BgcHExER4flyR7lA84KWh/g61DauZS9YudTHj8C46mYAXO+9jqup6eD3aZ4OZ9AQCLIfdv8H1JN5rHX/77fiqq0++H6+/RIA4/gRhz2OtvwbGCecaj3Glx+16T6uT9+38sRjE+An49u+r5g4Kw/cNDG3b2nz98O1dRNs2WBFooyZdNTHerRfxhkTrO//h2/icrkOu33j91twvWZ9OsJ21c2Q2qvdNRBkx3btr8Fux9ywBte2TZ1+3Id7XrWXmugiInJQDoeNtWuDWb/eztKl1ou7jJrPuST9FUwM6i66mexhyt0UERER6WoOh40vgnOocYYRU/U9I+K/ZPbsaFauDGXt2mAcDv25L9KZMjMzWbNmTYvrvv76a/r373/QPPTOYtZUYX7xEQC2cy7BOOVMK6+8pBA2rzv4HbdvBsAYkHVU+zUSkiExBUwXbNnYem1OJ2z8xtr+IDnnR7zf46yMbXPTt23a3vzgTet+Z+ZgBIcc2c76ZlqP0fxv1ab9fbLS2t+JozDaEBvT0YwTT4UgOxTtgcLDT5OXP/UfcLlg2EiM4ad1XB0pPTCGjwLAfO/1Dntcb9FvVREROaj8/EhycpLJzU3ijTfCCLXVcfKmBwBYsP0i5r93kncLFBEREemm8vMjuXF6Oi/tPhuAq/q8wBtvhJGbm0hOTjL5+ZFerlDEv9TV1bF9+3a2b98OQGFhIdu3b6e4uBiAp59+mgcf3BeXMn78eIqLi1mwYAE7d+7k7bff5u233+bcc8/t8trNzz6AxgZrQc6+mRghoRgnnd582/sHv9/3WwAwfrRo5pEwModYj3WwhvbWjVBfC1Ex0LvfUe+nhX6DrdOiPZiVFYfc1CzaAxvXgmFgnDb2iHdlNDfRaWMT3XQ1Wd8PwBhxxhHvryMYYeEw0HpjxFz35SG3NR27qf1oJRg2bEeysGxbaznD+sSUufo9TGfjYbb2bcpEFxGRg3Jnbm7ebGfatHh+nfkIfSN3Um4kM+j2yxk0tNrbJYqIiIh0S+7XaaFFY+GZJZyd9jbJIcX8YXYQmZlOUlKavF2iiF/ZsmUL99xzj+fyk08+CcCZZ57J1KlTKS0t9TTUAVJSUpg5cyYLFizg9ddfJz4+nmuuuYaRI0d2ee3uKXDjxFM9GevG0JMw31+B2TwF/mNmXQ04dlkX2tFEJzMLPn4Hc9tBJtE3W811Y3A2hq1jZnmNyChI6wV7dsH2TZB98OEu87MPrTPHDMVIPPI8bCNjACZW5nybfLceykutbPEhw454fx3FOHYY5sa1mN9+CWedc9DtzO/WW2cGHoPRo3fHF5J5LETHQmU5bNu8LwLID6mJLiIirXI4bBQWBgFQV2dwbPRGftkvH4Dyc25i0NAQxbiIiIiIeIn7dVghA9gbdywJZeu4tPfLLF2ay5Qp1QdsJyKHNmTIEJ5//vmD3j516tQDrjv22GOZNWtWZ5bVJu4Gr5Hed9+VA5ublQU/YFaWY0THtrzTjm3WYp9xiRgxRx85YvTJxAT43soMP2CxVfcE94Bjjnofre633yDMPbswt27COFQT/etPrO1PPMqYkpQe1mlRAaarCcMWdMjNTXf+e/ZwDHvw0e2zAxjHDsNc8hRs+hbT5TroGxjm1uY3YPoP7pw6DANj0HGYn3+IuXENhh830RXnIiIirXJHueTkJHPHbdHMyv4LdlsT/ysYy+k3nauPCIuIiIh4mfv12p9WXgpAbsaLvP2mXZEuIt2I6WqC3TusC736eq43omKseBdoNRfd3GFFubRrCh2gVwbY7VBTBcWOA2/f1py77o5F6SjNkS7m9k0H3cSsKLXiZABj6MlHt5+EZCtf3OmE0r2H3dxc95V1poPy349aej8IDoHa6kPmond2Ex2AY4Za+9qwtvP20QXURBcRkVbl5VUzb14pAE9ctYDj49ZRY0aROPXnLF9eRF6eolxEREREvCkvr5rly4u46G8nUGnG0ivcwZjkD5g3r1Sv10S6iyKHlYceEgLJqS1uck/9mq0tLlrwg7XNfo33o2HYgz3Ne3P7dy1uM0tLoHwv2GyQ0b9d+zlgv72tfXreQGiFuWGtNW2f0R8jIeno9hMUBEnN/66Fuw+5rVlVAd9b/wZG1rCj2l9HMex2Twb9wRZFNevrYNd2a/v+HftJgRa1HJNtndmywVpo1k+piS4iIq1KTXWRmemkR9geflL6OABlY69l1NlRZGc36qPBIiIiIl6WmuoiJaWJhJRg9vSfAFjT6HV1VpxCYWEQDof+7BcJaM1NUHpkHBg10m8QAOaOls1tALO5iU6P9HaXYPQZaJ35/kf72dY8Jd4zAyM0rN37aaFHhnW6txiztqb1bZob7J76jlZzpItZdPCJbsDKpjdNSEvHiE9s3z47wGEXRd25HVwughKTO7felJ4QFg7Oxn05/H5Iv01FRKQFh8PGypUh3H57LB9+GMIdgx/C3lTH6r3D+DTkHP0hJiIiIuJD3JEu1z5xOQCjkz9i7h9qPLF8inQRCWzmruZGsTu6ZT9GRnNUyw/bMF0/GoIq2Glt0wFNdPpYU+bmzm0ta2u+bLQ3MqYVRmQUxCZYF9xvCPzIvjcK2rdgpuHORT9ELAqA2dwgbu174RX9rCb6QSfRm7P0g9v7JsNhGDYbNOf1mz9sO/TGPkydEBERaSE/P5Lc3CQWLoxk6b9+4MJer+EyDe5ZN4NptyTqDzERERERH+KOdLnvkXC+dZ2EzTCZc+FzAMybV6pIF5FA527spvY88La0dLAHQ20NFO/xXG1WVkBVRfP9erW7BMM9Fd7cmPfsZ9eBWe0dqqfVHDcP0kTvsDcKkpsn0Q/TRPfEvbT2vfACzwR+a2+igGdSP7gT3uQ4oJZ0K1qGnWqii4hIgNiXhW7y37H3A/B9j3Hc/3ySsjVFREREfExqqovs7EZGj24gZpIV6TKsehnBRiOZmU5F8IkEONPdHG9u9O7PsNv3LS66Y+u+G/Y0N7sTkjDCwttfhLtJvbcIs6523/W7rUlno1dG+/fRCqNn8+O2kotuOp37mtrtnUR3Z823tnDq/vt0+FYTnZSe1psoDfVQUnjAzWbzv5u9T8fm1beqOcPe/GF75++rk6iJLiIigBXjsnZtMOvX21m6NJxze7xBr7pvqXGGsSnrGlJSmpSFLiIiIuKjHA4bXzadTmFdImENpYxPfZfZs6NZuTKUtWuDFcknEqiKrMau8aNFRd3cUSrmfk10091ET2tfc9mzj6gYiI61LjQ/ttnYAI7mye2enRRv0twcN3e3MoletAeamiAkFOKPblFRD/f9y/Yeervmpr2R4htNdCMoaN8bHM3RLS144lw0id4W+i0qIiLAvjzN3Nwk3nvL4LeD5wHwn61X84vbMhXjIiIiIuLD8vMjufnWZJ7deT5gLTD6xhth5OYmKhtdJECZ9fVQ3tzYbWUSHYDezXnlO7bsu655gUyjIyemm5u1pjvSpWAnmC6IjIbY+I7bz36MtOYGcWuLVXreKEi3MrnbI645e72yHLOxsdVNzIZ62FtsXfCVSXT25bObP2qim5UVUFEGQHDvfp1fiPtTAxVlmNVVnb+/TmD3dgEiIuIb8vKqGT++js2b7Wx44CV6RxRQFZxM+YgLWXhPCVlZrb9YEBERERHvc7+WC644A3P+E5yetJq+ETuYMSuazEwnKSlN3i5RRDqaO14kItJaaLMVRp8BmAA7tmKaJoZhQEmRdWNiSoeVYvTojbnpW88in+6oEHplWPvsDGnNee7FhZiNjRjBwZ6bzI58oyAqBux2cDqhorT1fzd3XnpEpLW9r3DH+fx4Et3R/CZDYgq28AgoK+/UMoywcIhLhLIS602P/oM7dX+dQZPoIiKCw2GjsDDIulBeytQBTwCwMevnXHaVi6wsxbiIiIiI+LLUVBcpKU00xqTiSD4ZgCsyllBXZzWvCguDFOkiEmiaG8UkpR18m159wGaDynLP1Lq5t7mJnpDccbU0Ly7qaZ67o006YOHSg4qJg/AIa+L9x4t+NsfckHyIf5s2MgwDYpun0UtLWt9ov2z6TnvT4CgcdBK9+d+rS6Nnmt/QMPe08skBP6DfoCIi4olyyclJpubZp4my1/Bl2RAu/NuF+viviIiIiJ9wv6b73WuXAXBJ+lJ+f0e453WeXtOJBBb3oqLGIRrFRkgouGNPvm/ORW9uohsJ7cwK338/7kgQd/a6e0o+qfWs9g7Zp2GAu0nvnqxu5llwtaP27450KWu9iW6WNEe5dOB0f4dw59E7dmE69/t0uftNh5SDxAB1As8bKu4FWP2MmugiIkJeXjXz5pWSFb2JyzJeBuC1qJvJX1jK8uVF5OVVe7lCERERETmcvLxqli8v4prZgykxU0gIKeeBq/8HwLx5pXpNJxJo3FPRiYeeKDcymhcX/WELZlMTlDbnqHdkw9fdRC8txqyswOyCJjqA0RzpcsB0s2fB1fZPogMYcYnWfg62uKjnjYkOnO7vCAlJ1rR+U1PL5rVnEr3rmuju+B3zR294+As10UVEhNRUF5kDG/lD1j8xMFm6exwXTO/L6NH1ZGcrykVERETEH6SmusjObmT0mCaaRo4H4JSGVwDIzHTqNZ1IoKlozrGOiTv0dn0zATA3r4eyvVb8SZD98Pc7AkZ4xL6p5h+2QHGhdX0nN9E9k+j7NdFNVxOUdHATP95qoh9sEt3dRCex46b7O4JhGJ5FPc2d2z3Xm16ZRG+OjtEkuoiI+BuHw8bKlSHcfnssPyz7nFFJn+I0gvnrhlvYvNmu3EwRERERP+Rw2Pgy4hycriCSStcyKGoLs2dHs3JlKGvXBus1nkiAMCvLrDPRsYfczjgm2zrz3beerHISkjBsHfuzwOjd36pr66Z9zeaumkR37DeJXrbXWgQ0KAjiO6ip7Y5zKW19Et301Ul0wOjV1zrTnFdvmqZ3JtHdb3gU7rZq8DP6zSki0o3l50eSm5vE80+HkLnmEQD+uzmPXXU9mDYtXrmZIiIiIn4oPz+SX9yWyZuFPwHgit5LeOONMHJzE5WNLhJIKq1JdCM67tDb9cywGu0NDZiffWhd1xnN3j7NsTGffQCmCSGhh23wt1vavkl0T2PWvahoQjJGUFDH7Mcd51J+6DgXn8tEB+jVPInuXly0uhJqm+O9Oijupk0Sk8EwoKEB3G8A+RG7twsQERHvycurpl8/J1/843X6R+6gsD6RHtdMZvkJ1guAlJQmL1coIiIiIkcqL6+a8ePriPz+p/DySn6W/ip/23gz98+tJTPTqdd4IoHCE+dymEl0w8A4Zijmp+9jvrfcuq4TmujGMUMxAdzN2qRUK06kM6X0tBqzNVVQVQHRsZgdHeWClYluwr4c+v2YzkYoL7Uu+OQkep+W3xf3mwyxCdbCs11Vhz3YejOitNiK+4mJ77J9dwRNoouIdEMOh421a4MpLAzCWVXLtIGPATBn0/XYo8JJSWlSFrqIiIiIn0pNdZGS0kR1xglUh6cRG1zFpB5vsHRpOCUlNgoLgxTpIuLnTNP0TKK3ZdrbGD6q5eWTf9LxRfUZCLH7NUa7YMrZCAnd17h256I3N7qNjopygX1xLmUlB0aRlJZYk/fBIRAV03H77Cg9+1inxQ7MuloobZ6aT/BCfnvzIrhmSWHX77ud9FtTRKQbys+PJCcnmZycZHY8/gpJoaVsqcrguZ3nKcZFREREJADk50eSc3Yq8768CIC8jMWKdBEJJLXV0OS0zrclMuXEU2HICdb5QUPguBM7vCTDZsPIGua5bDv9px2+j1Y1Z22be3Zal8uaI1fcje+O0BznQkM91Na0vG1vsXUan9T5k/dHwYiO2ffmxu4dmO56vdBEN9xxN37YRFeci4hIN+T+iO/331TykxULAdg2dAqX9a5n4sRysrIavVyhiIiIiLSH+/Vexc5ROBf/lxPjv+HY6I3ceF+KIl1EAoE7yiUsHCM45LCbG4aB7boZmO8swzhtbKc1e42fnou5/iuMn56HMWxkp+zjgH2m9cJc9yU0Ly5quhc1dTe+O2IfoaEQEQk11daiqZFRnts8+4vvuP11uF59oLzUykX3TOp7IXomsTliR010ERHxB6mpLuvr3YVE2Wv4uuxYep4zkr8PLfd2aSIiIiLSAfbF8sXh6DGKXnveJTfjRerqbgSgsDDoR9uJiF85gigXNyMqBuPcyzqpoOZ99BlI0D8WdOo+DtC8uKhZ0DyJ7mkSd+AkOkBswr4meq8++65vXiTTiInr2P11IKNnH8x1X8HuHfvlt3szzqWo6/fdTopzERHpZhwOGytXhnDfjBri1vwPgL9tvJnN3wWzdm2w8jFFREREAoQ7wm/6S5cDMLnXa9z922BPrJ8iXUT8WHPjFh9u3HYVI2OAdWbLBkyXa784lw6eDG+eNDfdj+9WUWad+vL3olcGAOau7zH3Wg1swxtxLknNcS7Fji7fd3upUyIi0s3k50eSm5vEwHVPEmQ6eb94BB+WjGDatHj9MSUiIiISQPLyqlm+vIib/9WHPWZvouw1zL3yZQDmzSslL6/ayxWKyNEyK458Ej1g9RkIoWFQXQk7t+1randwE91wP17zpLuHHzTRjfS+1pnvt0Bxc5RKR7/J0Bb7xbkcsECrj1Oci4hIN5OXV83QpM2Mfv81AGZtvJn77y8jO9vKQVc+poiIiEhgcEf4AezakQMfPMKIuqXA5WRmOhXlIuLPqqwmuqEmOobdDgOyYN2XmJ9+AKYLbDaI6eB/G/dCpT+aRDfLy6wzPtxEp3d/iIqGqsp91yV4IRM9fr8FWmuqW2TL+zo10UVEugmHw8b69XaWLQvnBtfj2AyTjVFnsqb8WMLCSklJadIfUiIiIiIByOGw8UVoDmOaFhBX8R3Hx37L7NkDmTKlmsREl14Hiuzn9ddfZ+nSpZSVlZGens6UKVPIyso66Pbvv/8+S5cupaCggIiICIYNG8aVV15JdHR05xZaXWWdRnbyfvyEMWgI5rovMT9807oiNgHDFtSxO4k7dJyLT2eiBwVhDB2Bueot64qgIIiN6/o6QkIhKgaqKqC0yK+a6IpzERHpJtwxLpuWbaZP+cc4XUH88n+3ADBtWrxiXEREREQCVH5+JDfM6MOyPWMByM14kTfeCCM3N1FxfiL7WbVqFfPnz+fCCy9k1qxZZGVlcd9991FcXNzq9hs2bODBBx/krLPOYs6cOUyfPp0tW7bw3//+t/OLrW2OYwqP6Px9+QHjhJHWGfeCq3EdvKgo+y1UWnaQOJfY+A7fZ0cyTjhl34WeGR3/JkNbxR8kFsfHaRJdRKSbyMurpl/fRno+PQ+A53aeR970OLZurWbixDqyshq9XKGIiIiIdIa8vGrGj68jfPdYWPQa5/d8nT+v/zV/+aeTzEyn4vxEmr366quMGTOGsWOtN5ymTJnC119/zYoVK7jiiisO2H7Tpk2kpKQwceJEAFJSUvjpT3/K0qVLO71Ws7bGOhOuN8EAjJ4ZkH0SrP3Muuxuqnek2Obm735NdNPl2rfIa3Rcx++zIx13EsboiWC3Y+T8zHt1xCfBD9swS4sxvFfFEdMkuohIgHM4bKxdG0xhYRAJuz7h5ISvaTRCeWDzL0lJcTFjRiWjR9frI7wiIiIiASo11Ypsqe1xLBVRfQkPqmdyr2XU1Vnti8LCIBwOtQeke3M6nWzdupXjjz++xfVDhw5l48aNrd5n8ODBlJSU8MUXX2CaJmVlZXz88ceccMIJnV+wp4muSXQ323mXQ0goxqixGBMu7PgduCfRy8swXc1vPtZUQVPz+Y7OYO9ght2OLfcGbJdeh+HFqXlDk+giIuKL8vMjmTMnGhtNLP/JfIiGh7+7HEd9MtOmwfTplcyYUXnYxxERERER/+V+TXh1n4u5d8j95GUsZtxtl0DzHKBeE0p3V1FRgcvlIja2ZSM0NjaWsrKyVu8zePBgbrnlFh544AEaGxtpamripJNO4tprrz3ofhobG2ls3PcpYMMwCA8P95w/GPdtnm2a41yMiMhD3s/XHHAcHfnY/QZhPPhc58WUxMaDYQPThVFRDr3SMdzxMRFR2IJDOme/nagzvx8H3WdCMibA3uIO229XHIea6CIiAc798d3ale9wzJotlDdGE3XhBeTuUIyLiIiISHfhfk1YVjCS+ufDGBy9lZPjv+aqP/VRpIvIflprwh2sMbdz506eeOIJLrroIo4//nhKS0vJz8/nkUce4cYbb2z1PkuWLGHRokWey/369WPWrFkkJye3qb60tDQAChoacAJJ6RmE9ujRpvv6Evdx+JvdCYk0lRSR0Nynjw+yUQTYE5Pp4YffB7eu/H5U9xvAXiCkppKUDv4368zjUBNdRCTApaa6SElsoG7+kwD8Z8vVnDcjlGuzy71cmYiIiIh0ldRUlxXflx1M8bdnELpuBbkZi8nMvIXsbA1ViMTExGCz2Q6YOi8vLz9gOt1tyZIlDB48mPPOOw+APn36EBYWxh/+8Acuu+wy4uMPjMyYPHkykyZN8lx2N+iLiopwOp0Hrc8wDNLS0tizZw+maeKsrACgpKYWo6DgiI7Vm358HP6mKToOSooo2bKZnoOGsHf7Fuv6iCgK/Oj74OaN74fLsNrR9Xt2d9i/WVuOw263t/nNqlbvf9T3FBERn+dw2Fi/3k7xkneZXLOHwvpEnvj+UrI21wGQktKkLHQRERGRbsLhsFFYGERR7HmcyQompr3F8+/+gqeeSvR8QlGvDaW7stvt9O/fnzVr1jBixAjP9WvWrOHkk09u9T719fUEBbWMDrHZrPUFDtbICw4OJjg4uNXb2tLENE3T2q45zsUMjwA/bEZ7jsPfxCUCmzFLiwEwy0ut62Pi/PN4mnXp9yM+yTotLe7wfXbmcWjlEBGRAJafH8m1V0YzsuQpAB767hpqm8KZNi2enJxk8vO1kruIiIhId5GfH0lOTjJX3nUKa8uPISyoge3PvsfChZHk5ibqtaF0e5MmTeKtt97i7bffZufOncyfP5/i4mLGjRsHwNNPP82DDz7o2f6kk05i9erVrFixAofDwYYNG3jiiScYOHAgCQkJnVan2dgIzuZPkGhh0S5lxFnfV7N5UUyzosy6ISbOOwX5I/e/VX0dZn2dV0s5EppEFxEJYHl51YzleXpsKKTCnsLCHy7k/vvLPB/ZVfaliIiISPfhzkUHqH49BzZu4Oahi3h0Wy7z5pUxalS9lysU8a7TTjuNyspKFi9eTGlpKb1792bmzJmeCIjS0lKKi4s9248ePZra2lqWL1/Ok08+SWRkJEOGDCEvL69zC22eQgcgLLxz9yUtNTfRKdtrne43iS5tFBYO9mDrjaDKcggN83ZFbaImuohIAHLHuLz5P5PfVj0DwMcJV9LgCiEsrFoxLiIiIiLdkDsX3eGw8UnGWVR+8wgJ7OS0xM9YujSbhAQXhYUuvVaUbm3ChAlMmDCh1dumTp16wHVnn302Z599dmeX1VJtjXUaFo5hCzr0ttKx4hOt0zJrEh1Noh8xwzAgOhZKi6GyApJSvV1SmyjORUQkAOXnR5Kbm0TEJ68Q7ixje3U6Nyy4GIBp0+L1UV0RERGRbiw/P5Ibf92Ll3bnAJDb+0XeeCOM3NxERf6J+AP3JHq4/q92NaM5z9ssKbROm5vohproRyY6xjqtKvduHUdAk+giIgEoL6+azPQyTn/NykKfs/l6Zv6+mq1b7Z5Fo0RERESke8rLq2b48Hq+WDoRKheTk/Y2SSEl/HG2jcxMpyL/RHydexJdeehdL7WndVrswHQ6oaI5ziU23ns1+aOoWADMynIML5fSVmqii4gEEIfDRmGh9XG+vpufITa4kuKQvizdPZ6xKRVMnlypj+aKiIiIdHPW60EniYk92ftkFgll67kk/RXq6i4A8Lye1OtGER/lmURXE73LxSVCSAg0NOB07LIyvQGi47xalr8xYmIxYd+/nx9QnIuISADJz48kJyeZK86z02fLEgB+99FNuAhSjIuIiIiIeLhfN/753UsAuCJjCbffFkNOTrIiXUR8nOmZRNf/065m2GyQYk2jN2z8BpqaP7kTE+vFqvxQ8yS6PzXRNYkuIhJA8vKqGT++jpCljxK1vYY15Vmc/IsTSdxWrRgXEREREfFwv24sdZxA9bNRZETs4idJn3DxH49RpIuIr2ueRDc0ie4dqT1h53bqv/nKuhwZjWEP9mpJfsediV5Z4d06joCa6CIiASQ11UVKSBHOH5YCcP/GG5l5VyM33Fjj5cpERERExJekprqsuJZsG4UbxxL51cvkZSwmI/MOsrM1eCHi02o0ie5NRkpPTKB+zafWFVpU9MhF78tE9xeKcxERCRAOh42VK0NYdddL2JoaWb13GO8Wn8rmzXbWrg3G4dCPfBERERHZx+GwsXZtMF9FnwvAT1Pe58t3yrn99lhWrgzV60cRX1Vfa52GhXu3ju4qtRcAzoKdABh9M71ZjV8yov0vzkW/EUVEAkR+fiS/va6e4bWvAnD/phsBg2nT4pVrKSIiIiIHcOeiXzNzGB+XnIjd1sSexe+wcGEkubmJev0o4qvq66zT0FDv1tFNGYOGtLw8+mzvFOLP/LCJrjgXEZEAkZdXzYWVDxK8q4ntESfxyd7h3H9/mefjuMq1FBEREZH9uXPRAcrfnADrvuCXx77Ig1uu4YF/VTJqVL2XKxQ50NVXX31U97vnnnvo27dvxxbjLQ3N/zdD1ET3BiM5DVvujbgW/gf6D4Z+g7xdkv9xZ6JXKRNdRES6iMNhY/16O5++4uBXFW8B8GHitQCEhZmkpDRZeZciIiIiIvtx56I7HDa2pJ9OyZdxJFLEWcmrqKsbSmFhEIWFQXo9KT6lrq6OE044gZiYmDZt73K5eP/993G5Auc5bNY3N9FDw7xbSDdmO2siSSecTIktGAzD2+X4n8jm/7/1dZiNjRjBvr8wq5roIiJ+Lj8/kjlzonlo2GxsPV28vudMZi4bAcC0afFMn17JjBmVXq5SRERERHyV+/Xk7wafyw0DniI3YzHX3HaG53a9nhRfc9FFFzFw4MA2bdvU1MT777/fyRV1sYbmOJcQNdG9KTRrKEZBAaZpersU/xMeYb35YJpQUwWx8d6u6LDURBcR8XN5edUcn7iBsz58AxOD2Ztv4K67ytm61c7EiXVkZTV6u0QRERER8WF5edUMH17PJ6/kQMVTnJW8ivTw3dzx93AyM52KBRSfcvbZZxMXF9fm7W022xHfx+c1Z6IbykQXP2XYbFYjvaZaTXQREelcDoeNwsIgAAZtWADAxqiz2FCZSUpKKZMnV+pjtyIiIiJyWFasSwOjR0dT/qcTiPrhSy7r/RKZmRd71tcR8RVTpkw5ou0Nwzji+/g8xblIIIiIspro1VXerqRNbN4uQEREjk5+fiQ5OcnMvGwPvUo+xukK4vr/TQWsGJf8/EgvVygiIiIi/sLhsLF2bTDrEicBcFn6yzwwO5yVK0NZuzYYh0PtAxGfoTgXCQQRUdZpjX800TWJLiLip/Lyqhk/vo7khf+CEli06xzypsexdWu1YlxERERE5Ii4c9Htxjl8fNa/SQkrwfjiE3JzxwLKRRff9M0331BZWcmpp54KQFlZGf/5z3/YunUrxx9/PL/85S8JCQnxcpWdoME9ia44F/FjkVYT3aypwh+WZlUTXUTET6Wmukgp/QpXyZc0uOz867vreHRUAzfcUO3t0kRERETEz7gHNACKXp5AyvdPk5exmIl3nqhcdPFZzz33HEOHDvVczs/PZ/369QwdOpSPP/6YtLQ0LrroIi9W2EnccS4haqKL/zIiojABqv2jh6HPY4mI+CGHw8bKd4LZ9sAzADy9YzI7a3uyebNdH7cVERERkSOWmuryNMp39ZuIyzT4SdJq6nYU8NRTEaxfr9eY4nsKCgro168fAE1NTXz66afk5ubym9/8hksuuYQPP/zQyxV2kuaFRZWJLn4t0r/iXPQbUETED+XnR/LYrzfSp+lbaptCeXDLzwErCz0nJ1l56CIiIiJyxNxr7lx3+zG8U3QaAKVL32DhwkhycxP1GlN8Tm1tLZGR1vNy69at1NXVcdJJJwEwcOBAiouLvVlepzBdTeBsju5UJrr4M2Wii4hIZ8u7opIpu+ZBJXyTdAGF9Uncf38Z2dnWiyl93FZEREREjpQ70qWkxODLBecylg+5atBS/rH5RmbPrWbUqHpvlyjSQkxMDAUFBWRlZbF27VqSk5NJTEwEoK6uDrs9ANte9fv9P1QmuvgzdxO9Wk10ERHpYA6HjfXr7ex46RNyq7dQ2RjJp/GXAxAWZpKS0kRqqsvLVYqIiIiIP0pNdZGa6sLhsFF6zjB2v5RKz3AHOalvU1c3ksLCIAoLg/SaU3zGsGHDeOaZZ9i5cycrV67kzDPP9Ny2a9cukpOTvVhdJ3FHuRgGBAfgoqnSfTR/isT0k0l0xbmIiPiR/PxIrsyNZ8Se+QA8tv0K/vZgOmBFuegjtiIiIiLSXvn5kdx8axLP/HABAHkZL3LbbXHk5CQrOlB8yuWXX07fvn1566236NevHz/72c88t33wwQcMGjTIi9V1EncTPSQMwzC8W4tIOxiaRBcRkc6Sl1fNGcHLyFy7jVpbDI9sy+Wuu8rZutXOxIl1ZGU1ertEEREREfFzeXnVDB9ezwevjsNV/ggjE78gM2ort/w1nsxMp6IDxWfExMRw5513tnrbH//4R0JCAnBSu6E5zkVRLuLvlIkuIiIdzeGwUVgYhOFsYPDmJwFYnXA5lc4oUlJKmTy5Uh+pFREREZEOYcW6NDB6dAilfz2FmK0fcUXvJWRmXuVZg0fEW26//XZGjhzJiBEjSE9PP+h2ERERXVhVF3I30UPURBc/F+lfTXTFuYiI+IH8/EhycpJZOPVDIuscOOqS+EX+lYBiXERERESk4zkcNtauDebbhHMBuCj9VT5+3+T222NZuTIUh0PtBPGOIUOG8NZbbzFjxgx+/etf8+yzz7J9+3Zvl9VlTHecS2iYdwsRaS9NoouISEfLy6tmwlll9HvsEWiAud9dx2131rN1a5NiXERERESkw+XnRzJnTjQGP+X90Q+SEbGbb+avZtGuSSxcGMn06ZXMmFHp7TKlG7r66qu5+uqr+e677/jkk0/46KOPWLJkCSkpKZxyyimMHDmSgQMHHvXjv/766yxdupSysjLS09OZMmUKWVlZB92+sbGRRYsW8f7771NWVkZiYiKTJ09mzJgxR13DIXky0TWJLn7O3URvaMBsbMQIDvZuPYehJrqIiB9ITXWR/MVLmA2l7KjpxXM/nM8ro8q44YZqb5cmIiIiIgEoL6+a8eOtZl3ZqzlkbH2c35zyAotenMS8eaWMGlXv5Qqluxs4cCADBw4kNzeX7du388knn/DJJ5/wyiuvkJCQwIgRIxg5ciTHHHNMmxfgXLVqFfPnz+e6665j8ODBvPnmm9x3333885//JCkpqdX7/POf/6S8vJwbbriBtLQ0KioqaGrqxHUDGjSJLgEiPAIMA0zTmkaPjfd2RYekJrqIiI9zOGxs+rqOYUteJAKYs+mXNJrBbN5s/QhPSWlSHrqIiIiIdCgrF92Fw2Hjs74TyPpuAT3rvuWY6M3U1SVTWBhEYWGQXouKT+jbty99+/bl0ksvZefOnZ6G+vLly4mNjeXhhx9u0+O8+uqrjBkzhrFjxwIwZcoUvv76a1asWMEVV1xxwPZfffUV69at48EHHyQqypqqTUlJ6bgDa029e2FRNdHFvxk2G4RHWg10NdFFRKS98vMjsb36IqcNrGRTZX9e2p0DWFnogD5KKyIiIiKdxop1SeM/J4zmnB5vkZvxIrfddofndr0WFV+Tnp5Oeno6P/vZz9izZw+rV69u0/2cTidbt27lggsuaHH90KFD2bhxY6v3+eyzzxgwYAAvv/wy7733HmFhYQwfPpzLLruMkJCQ9h5K65oXFjUU5yKBIDLKaqBX+34uuproIiI+7soLdhK7+WlogvWDpuB6P4j77y8jO9vKQU9J6cSPCoqIiIhIt5aXV83w4fVsfPkcqHqLyT2Xcd+GW/j7A3VkZjr1WlR8WlpaGuedd16btq2oqMDlchEbG9vi+tjYWMrKylq9j8PhYMOGDQQHB3PbbbdRUVHBY489RlVVFTfddFOr92lsbKSxcd+aVoZhEB4e7jl/MJ7bGvZNorc1psaXuGv2x9r3p+PoIO5c9NrqdtXQFcehJrqIiI9yOGysX2/HtuhlRjXV8VXZsXw38HQAwsJMfXRWRERERDqdFevSwJln9Kf29p7ElO/mvB6vk5k5yjPUIeItLpeL1157jQ8++ICioqIWzWm3BQsWHNFjttaEO1hjzjRNAG655RYiIiIAq0k+Z84crrvuulan0ZcsWcKiRYs8l/v168esWbNITk5uU31RwXYqgMj4BOJ79GjTfXxRWlqat0voEDqO9imMT6D+e4gLthPZAc/nzjwONdFFRHxUfn4kz/67mnfPfBmC4O8bp/LBqhjAinLRR2dFREREpCs4HDYKC4Mx085hSPkj5GW8yOzZOUyZUk1iokvDHeI1Cxcu5NVXX6Vv374MHToUu/3o21wxMTHYbLYDps7Ly8sPmE53i4uLIyEhwdNAB+jVqxemaVJSUkKPVpqCkydPZtKkSZ7L7gZ9UVERTqfzoPUZhkFaWhpVpaUAVDc0UldQ0Obj8xXu49izZ4/nTQh/pOPoGE32YADKdu+koh3P57Ych91ub/ObVa3e/6jvKSIinSovr5rJVQ8SurORHeEn8EHJCO66q5ytW+1MnFhHVpYmf0RERESk81m56NEkhFzCJ2fN5/i4dRR8sJ3cN44BlIsu3vPBBx9w/vnnt7ro55Gy2+3079+fNWvWMGLECM/1a9as4eSTT271Pscccwwff/wxdXV1hIVZC30WFBRgGAaJiYmt3ic4OJjg4OBWb2tLE9NsbHA/kF83b03T9Ov63XQc7dQc52JWV3XI/jvzONREFxHxMdakTxAhpTvpv2sFAB8k/hwwSElxMXlypSZ9RERERKTL5OVVM358HQB7nj2dPoXvkJuxmKjrb1IuunhVQ0MDQ4cO7bDHmzRpEvPmzaN///4MGjSIN998k+LiYsaNGwfA008/zd69e7n55psBOP3001m8eDH//ve/ueSSS6ioqCA/P5+zzjqr8xYWdTYPU9lbb8SL+BV3Jnq1778Ra/N2ASIi0lJ+fiQ5Ocmsm/U8NtPFG46f8NuHRwJWjEt+fqSXKxQRERGR7iQ11eVplP/Q9xwALui5nNKCWp56KoL164NxONRekK43dOhQNm/e3GGPd9pppzFlyhQWL17M7bffzvr165k5c6YnAqK0tJTi4mLP9mFhYfz+97+nurqa3/72t8ybN4/hw4dz7bXXdlhNB9hvEl3E77mb6DVV3q2jDTSJLiLiY/Lyqjn3hG8Z8MwbANy/6SbFuIiIiIiIV7kjXeBM3jqjL5lR29mUv4qFOy5i4cJIRbqIV1xzzTX87W9/IzQ0lBNPPJGoqKgDtmntukOZMGECEyZMaPW2qVOnHnBdr169uOuuu45oH+2iSXQJJJHWkKBZU+3lQg5PTXQRER+Tmuoi6bn5ALy0ewIbKjMZNaqIG27w/V8qIiIiIhKY3JEuJSUGnz15Hpn8i18NX0T+jp8xb14Zo0bVe7tE6YYiIiLo2bMnCxYsYMGCBa1u89xzz3VxVZ2ssbmJHtxJcTEiXciIiMIEqNYkuoiIHAGHw8audzdy/NrPcGFjzqbrAdi82fpxnZLSpDx0EREREelyqakuUlNdOBw2KsefSd2K/5JS/x3Hx35LXV06hYVBFBYG6fWqdKmHH36Yjz76iJNPPplevXpht3eDNpcm0SWQKM5FRESORv5TEZz6UT4kwLM7zmd7TQZgZaED+pisiIiIiHiVFeuSxj+H/pSfpS8jL2Mxt932R8/ter0qXenTTz/l8ssv57zzzvN2KV3GbM5EN5SJLoEgUk10ERE5CteMfJ/YjV9S1xRC5RmXwzdw//1lZGdb0wbuBZ1ERERERLwhL6+a4cPr+WbpOVC5jPN6ruDe9dP5yz+dZGY69XpVupTdbqdfv37eLqNrOZ3WqSbRJRD40SS6ls8WEfEBDoeNtWvshCx7CoAnv7+YqmBrBfiwMJOUlCaysxv10VgRERER8arUVBejRzcwdXY6dYl9CQ+qZ3KvZWRmOvV6VbrciBEj+Prrr71dRtdqnkRXE10CgnsSvaEB053376PURBcR8QH5+ZHMvWYt4UXfUeWM4N9bpzB3bjRgRbnk50d6uUIREREREYvDYeObb0LYlHoOAHkZi5k9O4qVK0NZuzYYh0OtBukao0aN4pNPPmH+/PmsWbOGrVu3HvAVcLSwqASSsAgwDOu8j0+jK85FRMQH5F1RQegPD0I1rE25iL0N8dx1Vzlbt9qZOLGOrCzffkdWRERERLoPKxc9mmj7xXw65jEGR2+l9KON5L4xDFAuunSde++9F4DXXnuN1157rdVtnnvuua4sqfM53ZPoaumJ/zNsNgiPtBroNVUQG+/tkg5K/+NERHxA8ra3Mat/oLQhlr0nXgj5MGpUAzfcUO3t0kREREREWsjLq2b8+DoA9rwwmv4Fy8nt/SJX/6mPctGlS914443eLqHrNTZnomsSXQJFZJTVQK/WJLqIiByEw2GjaHcT/Z5/hjDg31uuJuz7WAA2b7aTktKkXEkRERER8Snu16eFhUH80Pcc+hcs55web/Ja5c+BCAoLg1psJ9JZRo8e7e0Sup7THeeiTHQJEH6yuKiCykREvCg/P5KFUz8krLoQR10SC76/RFnoIiIiIuLz8vMjyclJ5sq7RrK2fDBhQQ2sefgDcnKSyclJ1utYkc6ihUUl0ERYvy9MH2+iaxJdRMSL8i4pIW7HI1ADc7+7jjpXGPffX0Z2tjVdoI/CioiIiIgvcke6lJQYfPnkuWSzkWnHL+Kx7Vcwb14Zo0bVe7tECVCvvvoqp59+OnFxcUd0nzPOOIOYmJjOK6yraBJdAowREYUJPh/nokl0EREvcThsVL20FHtNKRUhPXjuh/MBCAszARTlIiIiIiI+KzXVRXZ2I6NHNzBi6qlUOSNIaPyBkQmfk5np1OtY6TRPPfUUxcXFbd7e5XId8X18ldnkBFfz/y1lokugiGyOc/HxJrom0UVEvOTF+fVcsWER2GHmJzfTaFqTBNOmWatRT59eyYwZld4sUURERETkkBwOGxu/j+Hz3RPIzVhCbsaLzJ79B6ZMqSYx0aXBEOkUb7/9Nl999VWbtnW5Auf5ZzY27rugOBcJFH6Sia4muoiIl1yZ8Bjh9hq+LjuW/hePhH/BuHF1Lf7gEBERERHxZfn5kcyZE82QmJ+Rm7GEs9Pe5u63f8MbbyQCGgyRzvHWW295uwSvMBv2i0lSE10ChZroIiLSGofDRtmG3Qz4dDkAf95wKyNPttK1zjuvlqysRk3riIiIiIhfcGejQyIlTwwmsXIjF6e/wpBfn0dmplODIdLhnnvuOW+X4D3uSXSbDSMoyLu1iHSUSPfCotVeLuTQlIkuItLF8vMj2fKPhRimizccP+GTvcOZOzcasKJc8vMjvVyhiIiIiEjbpKbu+wTljj7nAHBF7yW8sjSUkhIbhYVBOBxqPYh0BM8kuvLQJYAYEcpEFxGRVkw5/RPiNryL0xXEzhE/h8/hrrvK2brVzsSJdWRlNR7+QUREREREfIQ70iU8aDKfjvk/+kbupOaTteS+cQqgSBeRjuLJRFeUiwSSSGuoUHEuIiLiYZomcW89DsCzO88n4ZxeAIwa1cANN/j2R5dERERERFrjjnQpKTH49MkJjOVF8jIWc+ndgxTpItKBzEb3JLqa6BJA/CQTXZ+pEhHpIg6HjR0vfgzbNlFnhvPPTb/ku++s9zI3b7brY64iIiIi4pfckS6JiSbGmTkAjEt9F8pLARTpItJBNIkuASmiOdJWTXQREQF45slgmhY/CcBDm6+iqCFJWegiIiIiEhDy8yPJyUlmyu9O5LO9Qwm2NbHhiZXk5CSTk5Os17oiHcCTia4mugSSyOZJ9IaGfW8U+SDFuYiIdJFrBi4iatMu6kITeHhbHgD3319Gdrb1S0IfcxURERERf7V/pMtXC87lJNZww5AX+c+Wq5k7r4JRo+q9XaKI3/M0GBXnIoEkLAIMA0zTmkaPjfd2Ra1SE11EpAsUbq8h5s1nAVidNoXapnAAwsJMwGqgp6a6vFafiIiIiEh7pKa6PK9nk2JPpuyBGOLYwxnJH5OZOUivdUU6QmODdapJdAkghs0G4ZFWA11NdBGR7m3bf5ZwUkMlGyv7c9V/LvVcP22a9cth+vRKZsyo9FZ5IiIiIiIdwuGwsWlbOB/uOofr+j1Dbu8XmT37L0yZUk1iokvDI9Khvv32W7744gs2btzI3r17aWhoIDo6mvT0dI477jhOPfVUYmJivF1mhzHdTfTgEO8WItLRIqOsBnq17+aiq4kuItLJTMduhpcvBuC+Dbcw7dYa5s6NZty4uhZ/TIiIiIiI+Lv8/EjmzIlmYOSFXNfvGcamfMBdK8vJfSMV0PCIdIyVK1fy8ssvs3v3bsLCwujTpw/9+/cnJCSEqqoqduzYwerVq3nyySc59dRTufTSS0lOTvZ22e1mahJdAlVEcy66mugiIt2TY49B2CMPE9XkpCDhJN4pGsVQrF8K551XS1ZWoyZxRERERCRguLPRIYrCBUNJKV/DZekvM+DWi8nMdGp4RNrtjjvuoLCwkJ/85CdMnTqV/v37Y7PZDtiuqqqK1atX8+677/LrX/+am2++mZEjRx728V9//XWWLl1KWVkZ6enpTJkyhaysrMPeb8OGDdx999307t2b+++//6iO7XDMBvckuproEmAirMWnzZoqDC+XcjAH/pQREZEO88l/PiNqxxfUNYVwyYt3AgZz50YDVpRLfn6kdwsUEREREelAqan7PmW5o+85AFzW+2Xqa6zBkcLCIBwOtSLk6J144ok89NBDXHvttQwcOLDVBjpAVFQUY8aM4Z577uF3v/vdQbfb36pVq5g/fz4XXnghs2bNIisri/vuu4/i4uJD3q+mpoaHHnqI7OzsozqmtnJPohuaRJcAY7gn0Wt8dxJdv7lERDqJWVdDTuU8AP69ZQoX/CIOgLvuKic3t5qFC0vIy6v2YoUiIiIiIh0vPz+SnJxkLpt1LiX1cfQMd7B89rfk5CSTk5OsQRJpl0svvZSIiIgjus+xxx7LiBEjDrvdq6++ypgxYxg7dqxnCj0pKYkVK1Yc8n4PP/wwo0aNIjMz84jqOlL7JtGViS4BJlJxLiIi3Zb58jMEVe6lIbYH/9l6Nf8YWAPAqFEN3HCDmuciIiIiEpjckS4lJQafPnk2OTxDbsZizr8rW5Eu0qEWLVrEmDFjSEhIOOC20tJS3nrrLS666KI2PZbT6WTr1q1ccMEFLa4fOnQoGzduPOj93nnnHRwOB9OmTWPx4sWH3U9jYyONjY2ey4ZhEB4e7jl/MIZhQOO+OJdDbevL3HX7a/1uOo4O5p5Er60+qlq64jjURBcR6QTFX20n7q1XMIC3km+l3hXKd99ZL3g2b7aTktKkLHQRERERCUipqS7Pa92NQWPhyWc4K3kVW1J3cUz2gc1OkaP1wgsvMGzYsIM20V944YU2N9ErKipwuVzExsa2uD42NpaysrJW71NQUMDTTz/NPffcQ1BQUJv2s2TJEhYtWuS53K9fP2bNmtWmhU/Lm5vokbFxxPfo0ab9+aq0tDRvl9AhdBwdoyKtB+VAuNlEYjue2515HGqii4h0MNPlovbx/yPedPFqwU+5adlPAVpkoU+fXsmMGZXeLFNEREREpNM4HDYKC4PYXNSHPcUjOD1pNZXL3+T2l3/BxIl1ZGU1aqhEOlVdXR12+5G3vVqbZG3tOpfLxb/+9S8uvvhievbs2ebHnzx5MpMmTTrgsYuKinA6nYesK6y5iV7d0EBdQUGb9+lLDMMgLS2NPXv2YJqmt8s5ajqOjuVq/nVQW1xEwVE8t9tyHHa7vU1vVh2MmugiIh3MXPUWPWu/xRkUzj3rpnPrrZXMnRvN/feXkZ1tfWxPH2EVERERkUCWnx/JnDnWEMk5aRdyetJq0re/xnPv3MzChZEaKpGj9v3337N9+3bP5S+++IJdu3a12KahoYEPPviA1NTUNj9uTEwMNpvtgKnz8vLyA6bTAWpra9myZQvbtm3j8ccfB8A0TUzT5LLLLuP3v/89xx133AH3Cw4OJji49YVBD9fE9GSi20P8unEL+/6t/J2Oo4NEWGtlmNVV7aqjM49DTXQRkQ5UuK2K2OcWYAcWN/wcR30KYP1xEBZmKsZFRERERLoFdy46wLdfH0/RigRSwkr4acp7nPP7Exg1qt7LFYq/Wr16dYs4lIPlkIeEhHDjjTe2+XHtdjv9+/dnzZo1LRYhXbNmDSeffPIB24eHh/OPf/yjxXUrVqzgm2++Yfr06aSkpLR5321lejLR1c6TAOPORK/RwqIiIt3C7ocWklhXwfqKgcz8MA9QjIuIiIiIdD/uXHSHw8bmiFCe++F8bh74BLkZL/Lk0tNISHBRWOjSkIkcsZ/+9KcMHz4c0zT53e9+x4033khGRkaLbex2O2lpaYSEhBzRY0+aNIl58+bRv39/Bg0axJtvvklxcTHjxo0D4Omnn2bv3r3cfPPN2Gy2A/YbExNDcHDwAdd3FE8T3d76JLuI31ITXUSk+zC3bCC7/H8AFI+bivMD60fsXXeVs3Wr3ZP9KCIiIiLSXbhjXXqHX8BNA+ZzZvLH/H5lMblvpANoyESOWHx8PPHx8QD88Y9/pH///oSFhXXIY5922mlUVlayePFiSktL6d27NzNnzvTkKJeWllJcXNwh+zoa+ybRj+zNARGf1xznoia6iEiAMxsbaJj/b+xA6bHj2B2R7bktJcXFqFE1mrIRERERkW4nL6+a4cPrWbYsjl1NJ9G74lMu772EXjfnkZnp1FpB0i7HHntshz/mhAkTmDBhQqu3TZ069ZD3veSSS7jkkks6vCaPxuahLE2iS6CJbJ5Eb2jAbGzA8ME3imzeLkBEJBCYzzyMfc929jbEcta/bue22+I8t02bFk9OTjL5+ZHeK1BERERExAtSU11kZTm58soadg88B4BL0pfSUOMEoLAwCIdDrQlpu7/+9a9s27atzds3Njby6quvsnz58k6sqmt4FhY9yMKkIn4rLAIMwzpf7ZvT6JpEFxFpJ9d7r2O+vwLTMNhw2m/Z+2Y8t95aydy50YwbV8eUKdUkJro0ZSMiIiIi3ZI70iXIyOGjsx4iLayIlQ98yYyC8YAiXeTIxMbGMnPmTDIzMznjjDMYMmQIPXv2bLFNbW0tmzdv5rPPPuPDDz8kIiKCm2++2UsVdxxlokugMmw2CI+04lxqqiAuwdslHUBNdBGRdjC3bcJ85v8AsJ2fS1zGMAAGDrQma2bMqCQ7WznoIiIiItJ95eVVM358HSUlBqufPIfzmM8dp73AK4vHM29eKaNG1Xu7RPEjN910E2effTYvvfQSTzzxBE1NTYSEhBATE0NISAhVVVVUVlZimibJyclMnjyZCRMmEBwA09vuSXRfjLoQabfIqH1NdB+kJrqIyFEyK8pw/edv4HRSnH4ac1b+nH4DrMzz776zfrxu3mxXFrqIiIiIdGupqS7P6+H1IWfR9PiTZNR+Sf/I7WRmRuq1shyxfv368etf/5ry8nK+/vprNm3aRGlpKQ0NDfTr149evXoxZMgQBg8ejOGOiAgAmkSXgBbRnIteXe3dOg5CTXQRkaNgNjXhevh+KC1mb0hvznj8PqqcUZ7b586NBqw8dH08VUREREQEHA4b6/f0ZEfhKH6a+j5X9F7C7Nk3tog/VENdjkRsbCxnnHEGZ5xxhrdL6RKeJnoATNWLHCDCWkfOrKnCF9/60uodIiJHwXzxSdi4FkLDMW6YyV//aUW23Hqr1Sy///4yli8vYvnyIvLyfPNdVBERERGRrpSfH8m0afEs/OFCAC5Of5X33jLIzU0kJyeZ/PxIL1co/mbHjh3eLqFraRJdApjhnkRXnIuISGBwffoB5oolAPwwdjrbS/qzdGl4i23CwkxN0oiIiIiI7MedjY4rk+pHkomniLPT3mbszJFkZjpJSWnydoniZ2677Tb69+/PWWedxahRo4iMDOw3YtyZ6CgTXQJRpDvOxTeb6JpEFxE5AuauHZgL/gXApwmXM+rmyeTmJvHGG2FAyxgXTdKIiIiIiOyTmmpFtmALYkfGRAByM16krs764H5hYRAOh9oU0nY///nPsdlsPPbYY1x//fXMnTuXNWvWeLusTqNMdAlokZpEFxEJCGZNNa5/3wf1dZB1PP0uu4zleUVs3mxn2rR4AO66q5ytW+1MnFhHVlajlysWEREREfEt+fmRzJkTTWroZXx0Vj6nJHzJnfeUsKlqAIDWE5IjMn78eMaPH8/OnTtZuXIl77//PqtWrSIhIYHRo0dz5plnkpaW5u0yO4wy0SWgKc5FRMT/mfX1uB75BxTuhoRkSi64ncIS6yN07skZgJQUF6NG1SjKRURERESkFe5Il5ISgzVPncaJWAuMJt70c0W6yFFLT08nLy+PK664gq+++oqVK1eydOlSlixZwrPPPuvt8jqMJtEloDU30c0a31xXTk10EZHDMPcWWxPo338H9mBsN/6Wpxb3ZM6c6AO2dU+ka4JGRERERORAqakuz7DJ1qoJ8PL7/Cz9f+zueynHZQd5uTrxdzabjbS0NFJTU4mIiKCiosLbJXUY0+UCp9O6oEx0CUBGZBQm+GwmuproIiKHYG7ZYDXQK8ogKgbbDb/F6JtJXl41/fo5mTYtnltvrWTu3GjGjatjypRqEhNdmqARERERETkIh8NGYWEQm+tPxqjpRUbELr5ctoonn53kiUXUpzrlSNTW1rJq1SpWrlzJpk2bCA4OZsSIEYwePdrbpXUc535xocFq50kAUpyLiIh/cq16C/Oph6x3+9P7Ypt6J0ZSKmBN0GRmWlMAAwdapzNmVJKdrRx0EREREZFDceeiA0wdcAF3DH6I6K+Ws/CjS1m4MFKf6pQ2++abb1i5ciWffPIJDQ0NDBgwgJ///OecfvrpREREeLu8jtW439+ainORQKQmuoiIfzFdTZiL5mO+8bJ1xQkjsV37a4ywcBwOG+vX21m2LJz+/a3m+XffWT9KN2+2KwtdREREROQw3LnoAJs+H03j+/9lePxasqI3cdN9yYwaVe/lCsVf3HvvvcTExDBu3DjGjBlDenq6t0vqPO5JdMOAILXzJABFRFqninMREfF9Zk2VtYDoN18AYEy6DOPcyzBsNqDl1Izb3LnW5WnT4jU1IyIiIiJyGO5cdIfDxuaYOF53nMWkHm+Sm/EiS5f+ioQEF4WFLg2oyGH95je/Yfjw4dia/14LaO4muj0YwzC8W4tIZ4iKsU4bGzDr6zFCQ71bz490g58yIiJtY+7Zieu+26wGekgItutvx3b+FZ4GOlhTM/PmlQJw661Ws/z++8tYvryI5cuLyMvzzVWkRURERER8TX5+JNOmxbNwx4UATO75Gh++7SI3N5GcnGTy8yO9XKH4upNPPrl7NNABGhus02BFuUiACgvf9ymLKt9bFFiT6CIigPnNF7gevh9qqyEhyco/zxjgud29+FFJicHSpeEt7hsWZmpKRkRERETkCOXlVTN8eD2v/S+L8tpexLKL83qsYNQdZ5KZ6SQlpcnbJYr4jsZ9k+gigcgwDIiOgbK9UFUOicneLqkFNdFFpFsz9xZhvr4E851lYLpgYBa2G3+LERPfYjvFuIiIiIiIdCxrCMVJYqLJD6+fQ+zGh8nrs5j1daMBKCwM2m87kW7O3UQPDvFuHSKdKaq5iV6pSXQREZ9gOnZjvrYI8+OV0GQtEGqM+ilG7o0YrXw8zr340ebNdqZNsxrsd91VztatdiZOrCMrq/GA+4iIiIiIyKG5h1Xigy9h9ZgnGBq7npn3FrC2IgtAwyoibk5Noks3EB0LgFlVjq8l//tlE/31119n6dKllJWVkZ6ezpQpU8jKyvJ2WSLiB8wftlnN888+tCbPAQZnY5t4MWQd3+oCLe4oF4C6un23p6S4GDWqRlEuIiIiIiJHyT2sUlJi8OVToxnJG+RmvEjk9Tcp0kVkP6Yy0aUbMKJiMMEnM9H9bvWFVatWMX/+fC688EJmzZpFVlYW9913H8XFxd4uzec4HDZmz47G4bC1OP/j2wJ5W1+vz5e2/cc/oigoOPTj+FK9R7ptyacbqf3Hvbj+dCvmp++D6aJh8Mk81+dBiq/8K8axwygsDGr1cfPzI8nJSSYnJ5nbbovz/B+bNi1eCx6JiIiIiLRDaqqL7OxGRo9uIO3icQCc33M5gzPKyc5u1LCKiJsm0aU7iIqxTn0wzsXvmuivvvoqY8aMYezYsZ4p9KSkJFasWOHt0nxOYWEQc+ZEU1gY1OL8j28L5G19vT5f29bdRPeXeg+3rWmaVH+2hhEf/oa4h28jZOOnuEyD8swzsP1hLt9N+BO3/WfkYR83L6+aefNKAbj1VuujpOPG1bFwYQnLlxeRl1fdyv9AERERERFpC4fDxtq1wXxdPYzNlf2ItNdS/Nr73H57LCtXhnoGZES6NWWiS3fQHOeiSfR2cjqdbN26leOPP77F9UOHDmXjxo1eqkpEfE2vsALivn0d119vo89Lv+O0xM8xbXZKj53AWe8tYtfZMzF692vz46WmusjMtHLTBw60TmfMqGT06HpNx4iIiIiItJP7k5/Tbklg4Q8XAhD/zWssXBhBbm6iPvkpAp5JdEOT6BLImifRzcpyLxdyIL/KRK+oqMDlchEbG9vi+tjYWMrKylq9T2NjI42N+xb8MwyD8PBwz/lAYhgGBQWwdm0wpmny4YfWu5OvvRbm2WbRonA2b7bz3Xd2z22bN9v5+uvggNnW1+vz5W2XLIGqqjC/qde9bVxwGd8+9QnhUZ/SY89XfDRmF7xlPUajEcpTWyfjPGsylY0pbKuOZtGiqqOuwX26ebOd1FSXGujN3D9PA+3nqnQNPX+kPfT8kfbSc0jaQ8+fjnHllTWMH18HwIYvTqfu3QcZErOJE+K+4dp70zn99IaA/DfW88c3Hck6fJ988gkrVqxg+/btOJ1O0tPTufjiixk2bFjHF6ZMdOkGjGjfzUQ3TNM0vV1EW+3du5cbbriBP//5zwwaNMhz/Ysvvsh7773HAw88cMB9nn/+eRYtWuS53K9fP2bNmtUV5XrF3XfDPfd4uwqRzhVmq+PkhK84PXE1pyetZkjMRmzGvh9lTlcQX5UP4d2iU8nf8TNKGhI6pY4//tH6PyciIiIiIu1XUABvvw2Ff/8jF6X/j+d3nkvstD9y4onW7T16WF8inWXVqlXMmzeP6667jsGDB/Pmm2/y1ltv8c9//pOkpKQDtp8/fz7x8fEMGTKEyMhI3nnnHV555RXuu+8++vVr+6efAYqKiloMgf6YuXIZroX/xRh+GrYbfnvEx+YrDMOgR48eFBQU4EctyQPoODqHuWENrtm/h7R0gu79d5vv15bjCA4OJjk5+ahr86tJ9JiYGGw22wFT5+Xl5QdMp7tNnjyZSZMmeS673+EtKirC6XR2Wq3eYBgG11+fxmmnFXsm0e+9N9aT4Tx3bjTXXVfF8cc38t13dubOjebWWysZONDJ118H8+ijUQGxra/X58vb/v73UFVVyQMP+FC9Qxso2FjB288UM+2cTznG/Jz4vd9ip+WLi0J7Xyp7DWNNw8ncuWAUP59qMnCgk8lfB/Poo3RYvfffX0Z2trXv1FQXBQWaRAfr509aWhp79uzxiV+84l/0/JH20PNH2kvPIWkPPX861j/+EcWcOdGcGPczLkr/H+f2WMGIG39NudP6eP/06ZX85jdVXq6y4wTS88dut7erOeUr9l+HD2DKlCl8/fXXrFixgiuuuOKA7adMmdLi8hVXXMFnn33G559/fsRN9MNyN9jtykSXAObDmeh+1US32+3079+fNWvWMGLECM/1a9as4eSTT271PsHBwQQf5KMu/v5LqjXWu/KNLY7t7LOtj8XNnRvNRRfVkp3dyNq1wcydG83ZZ9eRnd1IZqaTRx+NCohtfb0+X9528mQoKqrjgQe6vobBvUv5fNE2Luv7LSFlu8gcVsy4xq2Ev7Mb6mu5YSRQsu+5vrs2lYgTh1LdexgX3DGGBS9DdnYj9WuDqXosirPPLuqUerOzGz1NdIAA/DHSLqZpBuTPVukaev5Ie+j5I+2l55C0h54/HSMvr5rhw+tZ9r/+lNT3I7F2Gxf2WsaJv5lAZqaTlJSmgPx31vPHN7jX4bvgggtaXH8k6/C5XC5qa2uJiorqhALdC4sqzkUCWLT1pinVlZhNTRhBQd6tZz9+1UQHmDRpEvPmzaN///4MGjSIN998k+LiYsaNG+ft0kSkFQYubHWV2OsqOCFuD1HbduCqLCVp/V7mDC2h7/NbaHpsF8dUV/LyacAb1v3O6wkUWedNw8aOqh7ED+1D7ClD2Rw0nDGXD2P5HcUAOOqT920sIiIiIiJ+yVpzqIHRoxvYmX82vPtvcjNexDlwDNnZgfVJcvE9R7MO34+9+uqr1NfXc+qppx50m6Ndu8/cb2FRf87RD5S1AHQcnSQ6FgwbmC6MqnKMuMQ23a0rjsPvmuinnXYalZWVLF68mNLSUnr37s3MmTMD4mNDHS0lpYnp0ytJSWkCaHH+x7cF8ra+Xp8vbdujRzQ2m8u6LdmJ2dhAalQVf5hWQQ+jFPP7WnrWNPDA9QbpxWUYDfU8fq1Jn/UluDZU0L+okncuqSHjpVKanq/gmIpKtk2swvawFXny8mnAK2ACKcBF6cAez1OWSnsSob170pTYk0+/78ew8UnEDe5BoasHS56NIy+vGluqiziHjenTq7z6byYiIiIiIh3P4bBRWBjEtuDxnOV8nEHRW/nrP7dRcvVAEhNdpKQ0kZqqSEXpPK014drSmPvggw944YUXuO222w4aOQywZMmSVtfuO1xfqywkhEogIi6O+ABYHCAtLc3bJXQIHUfH252QSFNJEUn2IEKO8LnemcfhVwuLdqTDLdjgj3xtMQDpfKZpWit019ZAbTXU1kJdDdTXYdbXQUM9NDRAg/t8PTRfbzbUQ339vusb6ghqaqKppmbf9h35PAoNh6hoiIqByGiM2HhI7YmR1gtSekJKD4zQsI7bn3Qp/fyR9tDzR9pDzx9pLz2HpD30/Ol4s2dHM2dONACzsu/l8t4v8+Kus/nV1/cC1qDLjBmV3iyxwwTS86e9C/b5AqfTSV5eHtOnT28RIfzEE0+wfft27rnnnoPed9WqVfz73/9m+vTpnOheCfcgDjaJfri1+1zPPYrrjZexTbwI24VXH8GR+ZZAWQtAx9F5nPf+Gr7/Dtu0u7AdP+Lwd6Btx9HetRv8bhJdJNCYriaoroKqSmvhhOoKzKpKqK6EmhqrKV5bjVlbs1+zvGbfV1PHfazxoDPWdjuEhDZ/hVmnoaGe64yIqH0N8qhojMiYFg1zIqMxlNsmIiIiIiKHkZdXzfjx1hpFuz4cB5+/zMS0twi76jr6DonQJ0Ol0xzNOnxgTaD/5z//4dZbbz1sAx2Ofu0+s6GhudAQn2l2tkegrAWg4+gEsfEAmGUlR1xTZx6HmugiHcysr4eKUqgog4oyzMry5uZ4JVRWYFY3N8vdTfPa6vZPfBsGhEVAePNXqLvRHYYREgohIa00wMP2NcFDQiEsjKQevSiprMQMCd2vaR7qUws5iIiIiIhI4HJHtRQWBlGTPIi15YPJjt1IwsY3eOqLy5k4sQ5oVKSLdIrDrcP39NNPs3fvXm6++WbAaqA/9NBDTJkyhUGDBnmy00NCQoiIiOjY4twLi9rVypPAZsQlYAKUlXq7lBb0P0+kDczGRk9TnIpSzIoyKC/d7/y+26irPbqdRERaU9tRMRAVgxEZBeGRzV/hzacRGM2neE6tprlhs7XrGA3DILRHD4yCgo6NcRERERERETkC+fmRnkiXK3r/jL9l30fyhmUsfO/nLFwYGVCRLuJbDrcOX2lpKcXFxZ7t33zzTZqamnjsscd47LHHPNefeeaZTJ06tWOLa2yeRA8O6djHFfE1zZPolKuJLuIzTNO0JsTLSqB0L2ZZCZSWQFkJZtlez3mqKo7sgYNDICbO+o8fHYsRFQ2RMfviTtwxJ9H7xZ1o2ltERERERMQT6VJSYvDs/NFUOR9gQNQOTk34nCvuGcCoUfXeLlEC2IQJE5gwYUKrt/24MX733Xd3QUXNPJPoikqVABebAIBZvtfLhbSkJroELNPlgspy2FsMpUWYe4uhtBhKS6xmedle68v9bu7hBNmtxnjzlxEbDzHxzefjPOeJjYew8Dat3i0iIiIiIiItpaa6SE114XDYGH9eKC/9Xw55GS+Sm7GY2ro7KCwMorAwiJSUJsW6SPfhXoxUk+gS4IzY+OY4FzXRRdrNNE2oqbIa5HuLMfcWQWmRdb7Uuo6yEjjEytYtRMVAXCLEJ2LEJex3PhHiEyA20ZogV2NcRERERESkS7hjXYbEXEhexovkpL3DKXfeRkmDFa2hWBfpVtyT6MFq5UmAi7Mm0RXnItIGZl3Nvga5uym+/zT53mJoaMNH+AzD+hhIQhJGfBIkJLVskDc3zI2DrIwtIiIiIiIi3pGXV83w4fUsW9abwvpjSKnZwCXpSzn21+eTmekkJaXJ2yWKdBnT/Sl6uybRJcA1x7lQUYrpasKw+Ub8sZro0uXMhnora3xv0X4N8uKWDfLa6rY9WHQsNDfHPU3y+CSMhGTrfGwChlauFhERERER8TtWrEsDo0c38MOzOfDWBq7ovYTqgWeTna0GunQznkl0DQFKgIuNg6AgaGqyIl0Skr1dEaAmunQws7HB+rjFoSbI27pIZ0Rkc4M8+UcN8n0T5UZIaOcekIiIiIiIiHiNw2GjsDCIrbYxRDY+Sp/IXSxb/g1P5Y9k4sQ6srIalYsu3YMy0aWbMGxBVuO8aA+UFKmJLv7DdDqhphLKy6C8FLOi1DpfUdp82bqeilKoaeMEeUhoy6Z4vDU57pkgj0/ECIvoxKMSERERERERX+fORQe459iJXNP3eXh/OQu/GMvChZHKRZfuo3kSXZ+2l26huYluljgwMo/1djWAmugBw6yvgx+2Ul+yB7OkGNNlAia4mt+RdzrB2WhNijsbra9G6zrqaqzmd001Zk2Vdb62GqqrrNP6uiMrxm63Jsg9DXJ33EpzgzwhCSKitEiniIiIiIiIHFJeXjXjx1t/k+74aBx8+jw5ae+SElrMXf8IYtSoNqyVJRIIPJnoinORwGckpWBuBIoLvV2Kh5rogaJoD02zfkunPbUMA6JiIDYeYuIxYuMgJr75chxGbLznNiIi1SAXERERERGRdrNy0V04HDY2J/Xl073Hc3LC11yS/jJ1dT+jsDCIwsIgUlKaFOsiga3RaZ0qzkW6g8RU63RvkXfr2I+a6IHCHgypPbHb7TibmgDDany7v4Ls1uIT9mDPqWFvvhweDuFRVgZ5RCRGxL7zhEdCZBSERWAE+cZquCIiIiIiItK9uGNdLux5IScnfM0VGUs4/bYpuLD+TlWsiwQ898KimkSX7iDRykE3ix1eLmQfNdEDhJHWC/tf/o8ePXpQUFCAaZreLklERERERESkQ+TlVTN8eD0r/ncqdZXRpIfv4czkj7jwD0PIzHSSktLk7RJFOpc7ziVYTXQJfEZiKiZYC4v6CDXRRURERERERMSnWbEuDYweDYUPjSXsq5fIzXiR9MzBZGc3ers8kU5lmqYm0aV7SUqxTvcWYrqaMGzeT8ewebsAEREREREREZHDcThsrF0bzFfR5wIwNuUDHp9dw8qVoaxdG4zDoRaHBCinc995ZaJLdxCfCHa79dz3kWl0/YYREREREREREZ+Xnx9JTk4y18w8no9KTiTIcNFr+3JycxPJyUkmPz/S2yWKdA7nfp+2UJyLdAOGLQhSe1kX9uzybjHNFOciIiIiIiIiIj4vL6+a8ePrACh/MwfWfcFl6S8z4OafMXCwqVx0CVzuPHRQnIt0H2m9YNf3mHt2YmQP93Y1mkQXEREREREREd+XmuryNMqL00dRUh9Hj/BCQr/7lKeeimD9ekW6SIDaLw/dMAzv1iLSRYy0dOvMnp3eLaSZfruIiIiIiIiIiF9wR7pM/VUqL+y0stGDP3qNhQsjyc1NVKSLBKZGq4luhCgPXbqR5ia66SNNdMW5iIiIiIiIiIhfcEe6lJQYLJt/DvAUZ6V8RHr4bu74ezijRtV7u0SRjtc8iW5oUVHpRowe6ZgABb7RRNckuoiIiIiIiIj4hdRUF9nZjWRlORl5XiLvF4/AwOSy3i9RV2dQWBjE2rWKdZEA05yJrkl06VbS0sEwoLIcs7zU29WoiS4iIiIiIiIi/iU/P5Jp0+JZuONCAC5Lf5mZt0eRk5NMTk6yYl0ksGgSXbohIzTME+nC9995txgU5yIiIiIiIiIifiYvr5rhw+tZ/r+TqamKJyWshHGp7zLxzhPJzHR6FiAVCQiN+5roppdLEelKRp+BmAU/YG7/DmPoyV6tRZPoIiIiIiIiIuJXUlNdjB7dwN/ur6Z62HgAcnu/SGamk+zsRlJTXV6uUKQDNU+io0l06W76DgTA9IFJdDXRRURERERERMTvOBw21q4N5svISbhMgzOSP+Gp2eWsXBmqXHQJLJ5J9GAvFyLStYw+VhOd77/DNL37OQz9RhERERERERERv5OfH0lOTjLX3ZHFu0WnApCxYxm5uYnKRZeAYnoWFg31ciUiXax3fwiyQ3kpFBV4tRRloouIiIiIiIiI38nLq2b8+DoASt6eAN+s4uL0V0i/8VIGHGNTLroEDqcT0CS6dD9GaCgMOAY2fYO57iuMlJ5eq0VNdBERERERERHxO+7c88LCIEp7nULBpyn0CC8kcecqOOZ0CguDWmwn0havv/46S5cupaysjPT0dKZMmUJWVtZBt1+3bh0LFixg586dxMfHc9555zF+/PiOLco9iR6sSXTpfoys4zE3fYO5/msYPdFrdSjORURERERERET8kjvS5eZbk3hu5/nWle8vJycnWZEucsRWrVrF/PnzufDCC5k1axZZWVncd999FBcXt7p9YWEhf/3rX8nKymLWrFlMnjyZJ554go8//rhjC3MqE126L+PYYdaZDWswmz+V4Q1qoouIiIiIiIiIX8rLq2b58iIWLixmZ98cmkwbpyV+zoDI7cybV0peXrW3SxQ/8uqrrzJmzBjGjh3rmUJPSkpixYoVrW6/YsUKkpKSmDJlCunp6YwdO5azzjqLV155pWMLa15YFGWiS3fUdyDExEFNNXz7hdfKUBNdRERERERERPxSaqqL7OxGRo9u4NoZEbxdOAqAKzMWkZnpVJSLtJnT6WTr1q0cf/zxLa4fOnQoGzdubPU+mzdvZujQoS2uGzZsGFu3bsXZkROzmkSXbsywBWGMOBMA86N3vFaHMtFFRERERERExK85HDY2b7bz/PeXMi71fS5Of4Xfzr6Gy6aEkpjoIiWlSQ11OaSKigpcLhexsbEtro+NjaWsrKzV+5SVlbW6fVNTE5WVlcTHxx9wn8bGRhrdk+WAYRiEh4d7zrfK3UQPCT34Nn7CXb+Owzf4y3HYTjuLpjdfxvz6EyjbixGf2OL2rjgONdFFRERERERExK/l50cyZ040cAqbK/uRGb2N5HUryM29HIDp0yuZMaPSu0WKX2itCXeoxtyPbzNN85D3WbJkCYsWLfJc7tevH7NmzSI5Ofmg+6gaMIiaoSdh75lBfFraIev3F2k6Dp/i68dhpqVROGQYDd9+RfjK/xF/0x2tbteZx6EmuoiIiIiIiIj4tby8asaPrwOgfPl5sGkuU/o8xwnTx5E5yCQlpcnLFYqvi4mJwWazHTB1Xl5efsC0uVtcXNwB21dUVBAUFERUVFSr95k8eTKTJk3yXHY324uKig4eAXP8SIxhpxKdlsaePXs8jXp/ZBgGaToOn+FPx2FOvAS+/Yqq1xZTe9xJGJnHem5ry3HY7fZDvll1OMpEFxERERERERG/lprq8jTK9/QZS3ljNH0jd/L9q19RUmKjsDAIh0MtEDk4u91O//79WbNmTYvr16xZw+DBg1u9T2Zm5gHbf/311/Tv3x+7vfW51eDgYCIiIjxf7igXsKbYD/XVlm384UvH4Vtf/nIcDDrOykZ3uWj69324Nq49ouNoL/0GERERERERERG/l58fSU5OMjf9uidP75gMwPCyxeTmJpKTk0x+fqSXKxRfN2nSJN566y3efvttdu7cyfz58ykuLmbcuHEAPP300zz44IOe7cePH09xcTELFixg586dvP3227z99tuce+653joEkYBmXHkT9O4HleW47v8dTX+YStN9v8H5h5s6pFF+KIpzERERERERERG/5450KSkxWDr/PJyuhYxK+pT5931B2om9Fekih3XaaadRWVnJ4sWLKS0tpXfv3sycOdMTAVFaWkpxcbFn+5SUFGbOnMmCBQt4/fXXiY+P55prrmHkyJHeOgSRgGaEhWO7/W+Yzz6C+fE7UPCD5zazvq5T960muoiIiIiIiIj4vdRUV/O5IE4/L5bXHx/NOT3eos+WJdSfeAuFhUE/2k7kQBMmTGDChAmt3jZ16tQDrjv22GOZNWtWZ5clIs2MsHCMKbdgXnglfL8VnI0YkVEY9uBO3a+a6CIiIiIiIiISEPLzI5kzJxqAk+Mv55web9Fr59uccu4MShvjmD69khkzKr1cpYiItJcREw/Zw63zhoFxkHUIOoqa6CIiIiIiIiISEPaPdJk/fzBry48hO3YDV2Qs4ZhfXcCoUfXeLlFERPyQFhYVERERERERkYCQmuoiO7uR0aMbmDGjise2XQ7AVRkvkNm/TlEuIiJyVNREFxEREREREZGA4nDY2LzZzqt7xlEdFE+P8ELen/s5K1eGsnZtMA6H2iEiItJ2+q0hIiIiIiIiIgElPz+SadPiaXCF8H/rLwbgpMrF5OYmkpOTTH5+pJcrFBERf6JMdBEREREREREJKO5sdIBNn4+j/r0nGB6/lvw/fUjSiEGkpDR5uUIREfEnaqKLiIiIiIiISEBxZ58XFgZhxMTx0u4cLu39Cv2/e4GKEXdSWBjUYjsRb7Pb29aia+t2vk7H4Vu6w3G09xgD419IRERERERERGQ/+fmRzJkTDcDAyKu4tPcr9Cz6kCt/Vs2W6r5Mn17JjBmVXq5SxBIfH9+m7ZKTkzu5kq6h4/AtOo7DUya6iIiIiIiIiAScvLxqli8vYuHCYvqd1oPX95yJzTCZn/soy5cXkZdX7e0SRdqstraWO+64g9raWm+X0i46Dt+i42g7TaKLiIiIiIiISMBJTXV54loSEyuZedkUJqS9S8buNwnqdQlGQpKXKxRpO9M02bZtG6ZperuUdtFx+BYdR9tpEl1EREREREREApLDYWPt2mA2b7bzZVk2H5eciOFysvIPr7NyZSgOh9oiIiJyePptISIiIiIiIiIBKT8/kpycZKZNs/Km/7P1KgBOrH6Fm64OJj8/0pvliYiIn1Cci4iIiIiIiIgEpLy8asaPrwNg7dpgbrttFEUh/UlmK89PfZLkvIu8XKFI2wQHtxly5AABAABJREFUB3PRRRcRHBzs7VLaRcfhW3QcbadJdBEREREREREJSKmpLrKzG0lJaSIszAQMVsdfBkCvTS+xca2LtWuDFesiPi84OJhLLrkkIJqdOg7foeNoO/2WEBEREREREZGAlp8f6Yl0uXn+eeyo6UmMUcayuz4kJydZsS4iInJIinMRERERERERkYCWl1fN8OH1LFsWTv/+Th55Mpd7h9zP705eQO5/f0JKmrcrFBERX6ZJdBEREREREREJaKmpLrKynFx5ZQ0pKS6e++F8SurjiKzdQ8zm9yksDFKki4iIHJR+Q4iIiIiIiIhIwMvPjyQnJ5lp0+Kpc4XxxPdWNnr5C0vIyUlSpIuIiByU4lxEREREREREJODl5VUzfnwdJSUG8+dHsWDlxdwyeD5DYjbx3F2vkzl5mLdLFGnV66+/ztKlSykrKyM9PZ0pU6aQlZXl7bIO6vnnn2fRokUtrouNjeWRRx4BwDRNXnjhBd566y2qqqrIzMzk5z//Ob179/ZGuR7r1q1j6dKlbNu2jdLSUn7zm98wYsQIz+1tqbuxsZGnnnqKDz/8kIaGBo477jiuu+46EhMTfeY4HnroId59990W98nMzOQvf/mLTx3HkiVLWL16Nbt27SIkJIRBgwaRl5dHz549Pdt05fdEk+giIiIiIiIiEvBSU11kZzcyenQDM2ZUUt4Yy46+kwAYtvMpUlKavFyhyIFWrVrF/PnzufDCC5k1axZZWVncd999FBcXe7u0Q+rduzcPP/yw52v27Nme215++WX+97//ce211/LXv/6VuLg4/vznP1NbW+vFiqG+vp6+ffty7bXXtnp7W+qeP38+q1ev5tZbb+VPf/oTdXV1/O1vf8PlcnXVYRz2OACGDRvW4vszc+bMFrf7wnGsW7eOCRMm8Je//IXf//73uFwu/vznP1NXV+fZpiu/J2qii4iIiIiIiEi34XDY2LzZ+mD+G1xObVMo4Y6NfP3MN6xdG6xsdPEpr776KmPGjGHs2LGeKfSkpCRWrFjh7dIOyWaz8f/s3Xl4U3XaxvHvSZPuK6UtOxYBLVJAcUGLgjooVkfF3aEi7gpTeQcVdRTXcVQYqgwuo6OOCuiIAupoRXBBEfeVHYplX7pA9zVpzvtHmjQtLRRom7Tcn+vianJykvM7aYD2zpPniY6O9vyJjIwEXJXDmZmZjBkzhlNOOYVevXoxceJEqqqq+Oqrr3y65uOPP56rrrqKU045ZZ/bmrPu8vJyPvvsM8aNG8egQYNITEwkPT2drVu3smLFCr84Dzer1Vrv+xMeHu65zV/O47777mPkyJH07NmTo446igkTJpCfn092djbQ9t8T/c8gIiIiIiIiIkeMOXPCSE+PAeDxZ3szZ+ulAFQteEu90cWvOBwOsrOzGTx4cL3tgwYNYv369T5aVfPs3r2bW265hYkTJ/L000+Tk5MDQG5uLoWFhfXOyWazMWDAAL8+p+asOzs7m5qaGgYNGuTZp1OnTvTq1YsNGza0+Zr3Z82aNdx4441MmjSJf/3rXxQVFXlu89fzKC8vB/AE/m39PVFPdBERERERERE5Yrh7owOsXGlj2n3juKbXfE6MWcGyFxcTduLgAzyCSNsoLi7G6XQSFRVVb3tUVBSFhYW+WVQz9OvXj4kTJ9KtWzcKCwtZsGAB999/PxkZGZ51N3ZO/tyipjnrLiwsxGq11qvqdu/jT9+v448/nlNPPZXOnTuTm5vLW2+9xSOPPMITTzyBzWbzy/MwTZPXXnuNY489ll69egFt/z05pEp0d9m8iIiIiIiIiEh7kpDg9PQ/Dw42yavuzNytlwAQ991ccnMsaukifsUwjGZt8xfHH388w4YNo1evXgwaNIh77rkHoN4wy4brN02zTdd4qA5l3f52bqeddhonnHACvXr14sQTT+Svf/0rO3fu5Oeff97v/Xx5Hi+//DJbt25l0qRJ+9zWVt+TQ/pf4d577+W+++5j2bJlOByOQ3kIERERERERERGfmDMnjNGj4zxtXf6VPY7KmkBCd63h0bTNaukifiEyMhKLxbJPxWxRUdE+1bf+LDg4mF69erFr1y6io6MB9jmn4uJivz6n5qw7Ojoah8NBaWnpPvu47++PYmJiiIuLY9euXYD/nccrr7zCTz/9xIMPPkhsbKxne1t/Tw4pRJ8wYQKmafLMM89w22238d///pc9e/YcykOJiIiIiIiIiLSptLQyFi3KY+7cfEaNqiSnKo43t40B4KUxz5E2tvQAjyDS+qxWK3369NlnAOKKFSs45phjfLSqg2e329mxYwcxMTHEx8cTHR1d75wcDgdr1qzx63Nqzrr79OlDQEBAvX0KCgrYunUr/fv3b/M1N1dJSQl79uwhJsb1pqK/nIdpmrz88st89913PPDAA8THx9e7va2/J4fUE33EiBGMGDGCjRs3smjRIv73v//x3nvvMXToUM477zyOO+64Q3lYEREREREREZFWl5DgJCHBCUBsbAlLlgTzfPY4ru0zn7Cdq4go/A26DDrAo4i0vgsuuIBZs2bRp08f+vfvzyeffEJ+fj6jRo3y9dKa9Prrr3PiiSfSuXNnioqKmD9/PhUVFYwYMQLDMEhNTWXhwoV07dqVLl26sHDhQoKCghg+fLhP111ZWcnu3bs913Nzc9m8eTPh4eF07tz5gOsODQ3lrLPOYvbs2URERBAeHs7s2bM9bW384TzCw8OZN28ew4YNIzo6mry8PN58800iIiI4+eST/eo8Xn75Zb766iumTJlCSEiIp+I8NDSUwMDAZr2WWvJcDLMFGtoUFxfzySef8Mknn7Bnzx569OjB6NGjGTFiBIGBgYf78K0iLy8Pu93u62W0KMMw6Nq1K7t27fK7fkvi//T6kcOh148cDr1+5HDo9SOHS68hORx6/bRvOTkWcnMDyMqyetq6fHTtIxyX9z6F8YNw3P53T9DeGjrS68dmsxEXF+frZXRYH3/8Me+//z4FBQX07NmTa6+9lgEDBvh6WU16+umnWbt2LcXFxURGRtKvXz+uuuoqevToAbgqjN9++20++eQTysrK6Nu3LzfccINnYKSvrF69mocffnif7SNGjGDixInNWnd1dTVz5szhq6++orq6moEDB3LjjTfSuXNnvziPm266ienTp7Np0ybKysqIiYnhuOOO48orr6y3Rn84jyuuuKLR7RMmTGDkyJFA815LLXUuLRKil5eX8/nnn/Pxxx+Tk5NDXFwceXl5dOrUib/85S9++ZEFhegi9en1I4dDrx85HHr9yOHQ60cOl15Dcjj0+mnfZsyIICMjot62rsG7WTbyYgItDt7u9RRXTT261Y7fkV4/CtFFpKM7pHYublu2bOHjjz/mq6++wuFwMGzYMG6//Xb69u3Lli1bePHFF/n3v//N9OnTW2q9IiIiIiIiIiKHLS2tjHPOqQRg5Uobd90VzRW3hPHWJxdxTe/5XBTwH+Bvvl2kiIj4hUMK0b/++ms+/vhj1q1bR2RkJBdccAHnnHNOvammvXv35uqrr+axxx5rqbWKiIiIiIiIiLQId1/0nBwLwcF18cizv1/H1b3eI3DTCjZ+vJ6IIUmt2tZFRET8n+VQ7jRz5kwqKyu57bbbeP7557niiivqBehucXFxnH766Ye7RhERERERERGRVjFnTpinJ/rMmRHsrOzCvG1/BGDTcwuZMyfMl8sTERE/cEiV6A8//DDHHnvsAfdLSEhgwoQJh3IIEREREREREZFWl5ZWxtChVWRmhtCnj4NHH43i+exrubrXe5wV/zXHn70SOMrXyxQRER86pEr05gToIiIiIiIiIiL+LiHBSVKSg2uuKSc+3tW2ZUt5D7bGjwDAsvgdcnIOKT4REZEOQv8LiIiIiIiIiMgRbc6cMEaPjvO0dQG4af7NAIRv+IoPXinw1dJERMQPKEQXERERERERkSNaWloZixblMXduPqNGVQKwrqQfu+NOIcBwclXMbB+vUEREfEkhuoiIiIiIiIgc0RISnCQn2xk5spo77ijxbK8YcTkAwb9+hrk331fLExERH1OILiIiIiIiIiJHvJwcCytX2sjKsnq2fbLpeLKtg6HGQdl77/lwdSIi4ksK0UVERERERETkiNdYX/RHH43iwa9vAMD6zceYpcW+Wp6IiPiQQnQREREREREROeK5+6IvWpTH9OmFAEyaVMIX+adSGNkXm1mJ+ekHvl2kiIj4hEJ0ERERERERETniufuix8fXEBxset1isLrn1QA4lnxA7tZK3yxQRER8RiG6iIiIiIiIiEitOXPCPC1dZs6MAGDs9Av4vbQXAVWlrP7XZ75cnoiI+IBCdBERERERERGRWmlpZcydm8/YsWVMnVoEgJMAioddBkBK5TzMmhpfLlFERNqY9cC7iIiIiIiIiIgcGRISnCQkVDNyZDUrV9o824PPGAFbXiagZC+s/AGGDPPhKkVEpC2pEl1ERERERERExEtOjoWVK21kZdXVHv5jZizbepwDQOUnS3y1NBER8QFVoouIiIiIiIiIeJkzJ4yMjIh625YsCWbj11fxxYi3sa7/CXNPHkZsnI9WKCIibUmV6CIiIiIiIiIiXtLSyli0KI9Fi/KYPr3Qs33yE5GU9RiMBSfmclWji4gcKVSJLiIiIiIiIiLiJSHBCUBubgDBwaZne26uhf8VXMhV/Ibji0+wnX8lRkCAr5YpHUhBQQEOh2O/+8TFxZGXl9dGK2o9Og//01HOZX/nYbVaiYmJOeTHVoguIiIiIiIiItJAYy1dHn00iiDLaM456590Ks6HVT/D4JN8tELpSBwOB3a7vcnbDcPw7GeaZpP7+Tudh//pKOfS2uehdi4iIiIiIiIiIg24W7rMnZvPqFGVAEyaVEKVM4i9/f8AgHPZx75cooiItBGF6CIiIiIiIiIiDSQkOElOtpOU5ODCCyvq3bYh/nwAzBU/kpe11xfLExGRNqQQXURERERERESkCXPmhJGe7uqjO3Omq73LrQ8N4ts9J2CYTta98oUvlyciIm1AIbqIiIiIiIiISBPS0sqYOzefsWPLmDq1yLPdduY5AJxi/wDTWeOr5YmISBvQYFERERERERERkSYkJDhJSKhm5MhqVq60ebaHDj8VNoYTUJQHa36FgUN9t0gREWlVqkQXEREREREREdmPnBwLK1fayMqqq0X86rtwvq05G4Cyb37w1dJEms2srMC5cDbm9s2+XopIu6MQXURERERERERkP+bMCWP06DhPb3SARx+N4sXlIwCo+uVXH61MpPnMt/+Dmfk2zr9N9vVSRNodhegiIiIiIiIiIvuRllbGokV5LFqUx/TphQBMmlTC13tOxGlYibbvxMzd5dtFihyAuepH14Uah28XItIOKUQXEREREREREdmPhAQnycl24uNrCA42PdvLa0LJjxoAwI4lK8jJUcwifqyk2NcrEGm39K+7iIiIiIiIiEgzzJkT5mnpMnNmBAD/+e50AFb8dxVz5oT5bG0iB2Sv9vUKRNothegiIiIiIiIiIs2QllbG3Ln5jB1bxtSpRQB8mTcMgD/0/J60q4t8uTwREWkl1gPvIiIiIiIiIiIiCQlOEhKqGTmympUrbQCsKj4GR3Ak1spi4svWAQN8u0iRRph2e90Vq+JAkYOlSnQRERERERERkWbKybGwcqWNrCxXEGli4cfyk123ff6b+qKLfyrIq7scGOS7dYi0U/qXXURERERERESkmebMCWP06DhPb3SAeStTANi+ZIX6oot/2uMVolerN7rIwdLnN0REREREREREmiktrYxzzqkEYOVKG3fdFc2y/FMAGBK9hl6X7ALCfbhCkX2Ze/PrrjjsmM4aDEuA7xYk0s4oRBcRERERERERaaaEBCcAubkBBAebAORUxbM3OJFOlZvI/XIVZuhpnv2kfVq4cCHff/89O3bsIDAwkP79+5OWlka3bt08+5imydtvv82nn35KaWkp/fr144YbbqBnz54+XHkTKsrqX6+uhuAQ36xFpB1SOxcRERERERERkYPQWEuXxVnJAPzv5QK1dOkA1qxZw7nnnstjjz3G/fffj9Pp5G9/+xuVlZWefd577z0+/PBDrr/+eh5//HGio6P529/+RkVFhQ9X3oSqyvrXq6t8sw6RdkohuoiIiIiIiIjIQUhLK2PRojzmzs1n1ChXONlnUCgAl5ybS1pa2f7uLu3Afffdx8iRI+nZsydHHXUUEyZMID8/n+zsbMBVhZ6ZmcmYMWM45ZRT6NWrFxMnTqSqqoqvvvrKx6tvRMM+6ArRRQ6KQnQRERERERERkYOQkOAkOdlOUpKDCy90VR1XWiIBCKgsITc3gJUrbeTkKHbpKMrLywEID3f1u8/NzaWwsJDBgwd79rHZbAwYMID169f7ZI37Va1KdJHDoZ7oIiIiIiIiIiKHYM6cMDIyIgD4cGkcZyTDxt8quOGVOAAmTy7hjjtKfLlEaQGmafLaa69x7LHH0qtXLwAKCwsBiIqKqrdvVFQU+fn5DR/Cw263Y7fbPdcNwyAkJMRzuSnu2/a3z341CM2N6qpDf6zDcNjn4Sc6ynlAxzmX1j4PhegiIiIiIiIiIocgLa2MoUOryMwM4awYG2RDtK2YWbMK6NfPQXx8ja+XKC3g5ZdfZuvWrTzyyCP73NYwsDNNc7+PtXDhQt555x3P9cTERJ588kni4uKatZYuXbo0a7+G9lgslHtd7xQRTnDXrof0WC3hUM/D33SU84COcy6tdR4K0UVEREREREREDkFCgpOEhGpGjqzm949CXCF6YBFh/RwkJ9sP/ADi91555RV++uknHn74YWJjYz3bo6OjAVdFekxM3YDZ4uLifarTvY0ZM4YLLrjAc90dwufl5eFwOJq8n2EYdOnShd27dx8wqG9MTVFBvet7du3E0rnbQT/O4Trc8/AXHeU8oOOcy4HOw2q1NvvNqsYoRBcREREREREROUQ5ORZycwPIyYnmKFyV6PfMiGD8+DJiY53Ex9eQkOD09TLlIJmmySuvvML333/PQw89RHx8fL3b4+PjiY6OZsWKFSQmJgLgcDhYs2YNY8eObfJxbTYbNputyWM2Z12HEnSaVQ16oFdV+TQwPdTz8Dcd5Tyg45xLa52HQnQRERERERERkUPk7oueEGTyw9kQbStiyaIgliwJBtQXvb16+eWX+eqrr5gyZQohISGeHuihoaEEBgZiGAapqaksXLiQrl270qVLFxYuXEhQUBDDhw/37eIb02CwqFldRfvugC3SthSii4iIiIiIiIgcorS0Ms45pxLDUQ3Pgc1SQ7i1jMefsqsveju2ePFiAB566KF62ydMmMDIkSMBuOiii6iuruall16irKyMvn37ct9993kGhfqVqtoQ3RYI9up9Bo2KyP4pRBcREREREREROUTuVi25uUHUWAIJcFYTbSumsjK0dntAvf2kfZg3b94B9zEMgyuuuIIrrriiDVZ0mKqrXV8jImFvvkJ0kYNk8fUCRERERERERETaszlzwhg9Oo69FeEARNmKueuuaEaPjmP06DjmzAnz8QrliOeuRA+PdH1ViC5yUBSii4iIiIiIiIgchrS0Mha/t5m4oL0A7KzowqRJrj7os2YVkJZW5svlidT1RA+Pqr2uEF3kYKidi4iIiIiIiIjIYUhIcBJftAEnUB0RT4E9mr59CwDo18+hVi7ie7WhuRERiel1XUSaR5XoIiIiIiIiIiKHydz6OwB7QvoCsHGjq25xxowIli4NYuVKGzk5imGk7Zk1NeBwuK6onYv4kGmvpuYf9+H84L++XspB07/eIiIiIiIiIiKHa2s2AG98lQzAzJkRACxZEszYsbHqjS6+4x2YR6idi/iO+d0XsH4l5ntv+HopB03tXEREREREREREDpNZG6JffkdXzkvMY+VKG3fdFQ24+qL36+cgPr7GhyuUI5Z7qKhhgTDX8FtTIbr4QkW5r1dwyFSJLiIiIiIiIiJyGMyqKti5DYDwpKMACA42Pbe//34Ie/ZYyM0NUEsXaXvuoaKBQWALqt1W7bv1yJGrxuHrFRwyVaKLiIiIiIiIiByOHZvBdEJEFK+/14uMpyLr3bxkSTBLlgQDMHlyCXfcUeKDRcoRy111HhQE1too0GH33XrkyFVT92kc02HHsNp8uJiDoxBdREREREREROQwuIeK0vto0q4q55xzq9izx+DVV8M94blauojPVNWG6IFBGDYbJoBdlejiA14hOlWV0I5CdH2GSERERERERETkcNT2Qzd69iEhwUl8fA2xsSYXXljh2aWy0gBQSxdpe+6e6EHBdaGlo/221ZB2zP1abHi5HVAluoiIiIiIiIjIITJNEzN7PQBG76MBmDMnjIyMiHr7uYeMgquly513lrbZGuUIV11XiY4t0HVZ7VzEFyrK6i5Xta/htnrrU0RERERERETkUGWtgR1bXBW+/QcCkJZWxqJFecydm8+oUa5qy0mTXH3QZ80qIC2trMmHE2lpZpXXYFF3JbpdIbq0PbPc683Dqoqmd/RDqkQXERERERERETlEzsULATBOPRMjIgqAhAQnCQlOAGJjS1iyJJi+fV3tM/r1c9TeZvhkvXIE8gwW9W7nohBdfKC8/VaiK0QXERERERERETkE5q7t8Nv3ABjnXLzP7Tk5FrKyXNHLxo2urzNmRDB+fBmxsc42W6cc4WpDdCMoGGy1UaBCdPEF7xC9un31RFc7FxERERERERGRQ2Auedd1YfDJGF167HP7nDlhpKfHADBzpqtH+pIlwYwdG8vo0XG88EJbrVSOaJ52LoFq5yK+5dUT3axsXyG6KtFFRERERERERA6SWVSA+c1nAFjOvaTRfdLSyjjnHFdQtHKlzTNcdNasAvr1czBoUFybrFWOcJ7BomrnIj5WUV53WZXoIiIiIiIiIiIdm/n5h+BwQGJ/6JvU6D4JCU7i42sACA42PdsrK1390HftcrV8EWlV7t7T3oNFHXZM02z6PiItzDTNBj3R21eIrkp0EREREREREZGDYFZVYi79CHBVoRtG00NC58wJIyMjot42d0U6wOTJodxxR0mrrFMEqKv4DQoGW6DrsmlCTQ1YFQ1KG6muhhpH3XWF6CIiIiIiIiIiHZe5/BMoK4G4LnD8Kfvd193SZc8eg1dfDWfJkmDA1dLltNNisFjK93t/kcPmbucS5FWJDq6WLgrRpa1UlNa/rhC9deTm5jJ//nxWrVpFYWEhnTp14vTTT+eSSy7Bqr/wIiIiIiIiItIGTIcDc8l7ABijLsawBOx3/4QEJwkJTgBiY0s8IXq/fg5OOAF27XKirhrSmkzPYNEgsHllaA47EOKTNckRyLuVC9S1GWon2k36vHPnTkzT5Oabb6ZLly5s27aNF154gcrKSsaNG+fr5fmFnBwLL7wAF19sIT6+hpwcC3PmhJGW5nqRui8nJDjr3Xaw1zvKY4mIiIiIiIgcLHP+q5CfA+ERGKed3az75ORYyM0NICurLoZZvjyQBQtgxIhAkpLs+j211gcffHBI9zvjjDOIjIxs4dV0EF6DRQ1LAFgs4HRquKi0rYoGn7qpqvDNOg5RuwnRhwwZwpAhQzzXExIS2LlzJ4sXL1aIXisnx8LDD8Opp7pC9NzcADIyIjyTwN2XExKc9W472Osd5bFEREREREREDobz+y8xP3kfAMu16RhBQc26X2N90R99NAqAF1+MZfLkEvVFrzV79uxDut+AAQMUojeltuLXCHJ9CgKrzRWs2xWiSxuqbBCaqxK97ZSXlxMeHu7rZfiE+fs6nE9MqdsQFkHvqN68eXIwvRbWUPOZhZ5lVl44IZTumQ6wBPD04BC6LXHg/MWgS6GVB5KiiP/aiXNzALF7QhjfO4boVXacZQFE7ArhzLg4QrdVYIYGEJwbwtFhZVhLK6gJDAPa92fNVJUuIiIiIiIiB8PcsRXztVkAGOddhjFkWLPvW9cX3cKrr4axZEkwkyaVMHNmBLNmFZCS0r7CpNZ25513ctRRRzVr35qaGiZNmtS6C2rvqr3auUBdiK5KdGlLDSrPzWr1RG8Tu3fv5qOPPjpgFbrdbsfu9c6aYRiEhIR4LrdXZtaa+hvKSggrW0VKZ2Cb608EcF4XYKNrl0u6A2td8Xcn4MZE4EfX9QTgkeOAz1zXewKvnQQsBCfQB/h8BPCK67E2nWfBPiuEkqBQ4p1hLBgWSchLwWyJCqWyPIbb+yaw881gSr+MYFNeJ/qHF7P0fzayNoTy2wrXO58ffRTsWf4774SQlWVl40ar57bmXP/tN9tBP9bKlTaCg61kZEQwdGg1XbpUH/o3ogNx/31oz38vxHf0+pHDodePHA69fuRw6TUkh0OvnyOHWVGO8/nHoboKI2kIljFpzfq+5+RYmD07lGuuKWfQIAdLlwZ6eqK7715V5Wr1kpsbUK9/+pEsJiaGuLi4Zu3rdLbe87VmzRref/99Nm3aREFBAXfeeScnn3yy53bTNHn77bf59NNPKS0tpV+/ftxwww307Nmz1dZ0SLwHiwLYaoeLqhJd2pBZ2SA0b2eDRQ3T9O34innz5vHOO+/sd5/HH3+co48+2nN97969PPTQQwwYMIBbb731oB4/MTGRJ5988vAW7QdMp5OyTz9g2ZtZ/PS9g18KBlLhDMZq1BBg1NR+dbi+Wmq8tjsIMGqwWRwEWuwEW6oICqgi2FJFcEAVQZ6v1XXXa7cFB1QRFlCO1VJzyOt2mgaF9kh2VSawvbwr2yu6sb2iS+3Xrmyv6EqRPRJomx9Cb74ZHnoIXngBbrkFunZtk8OKiIiIiIhIO2GaJnsem0LFN58TEJdAwsw5BETFNOu+P/8MQ4fCTz/BCSe4fu988cWm93/wQdfvqEey8vJygoODsVgsrXqf5vjll19Yv349iYmJzJgxY58Q/d1332XhwoVMmDCBrl27smDBAtauXcvTTz/tKeBsrry8vHpFoA0ZhkHXrl3ZtWsXBxvl1Uy5Hgrysdw3A+OoftTccyPsycVy73SMPscc1GMdrsM5D3/SUc4D2u5cnJ9/iPnGCxBghRoH9DmGgHunt9jjH+g8bDZbs9+ca4zPK9FHjx5NSkrKfvfxPsG9e/fy8MMP079/f26++eYDPv6YMWO44IILPNfd7xTn5eXhcDgOcdV+YuBJdL39FE7KsXASsGpVIHfeGcX//V8JRx/t4LffbLz0UjiTJrn6qs2cGcGNN5YyYLCdjRutPDkzgkmTSujb18HGjVZm7ue657FuL8ZqVvH6CwbX/SmP5L5F5G6pZPH7Jpem5tM9pojynGJ+/62Ck5Ly6BRYgFFajFFWTExgERbDpFNgEZ0CizguckOjp1ViD6MyLIGaqHh22rsx54tkBv2xN52SupGVHdT4uhqc4+DaczzQvgkJRcyf7+Thh2Po338PZ5555FalG4ZBly5d2L17d7v/D0Danl4/cjj0+pHDodePHC69huRw6PVzZHB+NB/nN5+D1Qo3TSG3vBLKdzW5v3f1eV6eBYjj668LyMtzkJAQBERyyilVDBpk59//DueBB4o57TRXpXBCgpNdu9pfJbrVaj2scMpbaGhom9ynOY4//niOP/74Rm8zTZPMzEzGjBnDKaecAsDEiRO56aab+Oqrrxg1alSrrOmQuCt+3T3R3ZXoaucibcldiR4VDXvz210lus9D9MjIyGYPfnAH6ImJiUyYMKFZ7zDabDZs7n8cGugIP+TEx9cQH1+/Mnz06EqSk+306+fgpZfCOe8814ty5swILrusguRkOytX2pg5M4Lzzqts1nXPY6W6/mOfMaszZ11lkpwcxcqVNu74dxx/uTLPc9975sax6B95xNdeHz06jkWZuxmYuIesn8p45C/VPHFXFrbiHL75oIg/HL+VkPLdUFJEhK2MiOpsyMumC3DC4AWwFdgdSHlsXzoNSOaco3rQc1gi/Y4+qtnn+O23gZ593NyDXAAyM4MZOVJ96EzT7BB/N8Q39PqRw6HXjxwOvX7kcOk1JIdDr5+Oy1z7G84FrwNgXHUzJPZr9HvtPXdr7doAMjIiSEx0UFnpKuRLT69fuf7dd0F8952rtcbvvwdwyy11YaZeSu1Dbm4uhYWFDB482LPNZrMxYMAA1q9f718hurudS6DXYFFQiC5ty90TPTJGIXprcrdw6dy5M+PGjaO4uNhzW3R0tO8WJs1nCcCIjKGqczyf58VRMMj1kaGJf4tj0ROuAH7VzzVMuKqGV2es5ajIXeSv2sWGT7dwcpe1BFRXELprDdcdtQaWgHMJHGsL5p1hx5LwZW8q4/uTEHRWk4dPTa1g7twwZs0qIDfXwqOPRtWrSo+Lq2HKlChSUytISnKoD52IiIiIiMgRzNybh/Pf/wDTiXHa2RhnnNvkvrm5ruD8nHMqycx0tfFoGJx7mz69kOBgk/T0GFJT21eQ1NoefvjhZu9rGAYPPPBAK66maYWFhQBERUXV2x4VFUV+fn6T9zvU2X2HOoPBdNZ4wnIjKMh1f0+I7mjzmQ4dZZZERzkPaMNzqQ3NjZhYzM1ZUFHeosds7fNoNyH6ihUr2L17N7t3796nD/q8efN8tCr/kpDg5MEH8YS/8fE1TJ5c4qlU977c8LaDvd5ajxXX3cZFt0QTdvLxWBIGYx5r4bvKMPr9qYR4tlO04neyPt1CcuQabLt+x1JdycmdfoVffwXg+7P/gf1/A3EWnE5Cz9OZPDnY89hJSQ4mTy4hJaWKGTNc1ejeVelPP+36RMTcuWFMnlzCHXeUtMw3RkRERERERNoVc08uzlmPQkkR9EzEGHvrPsGMd/X5nj2u27KyrPTp42od6120NXVqESkp1WRlWUlPjyE52e75HX7AgHbearaFmaZZ77neuXMnhYWFdO7cmejoaAoLC8nPzyc6Oppu3br5cKUuDV8XB/pUysKFCxud3dfcdjhdunQ5qPU5y8vY4b5v76OwBAWTExZGNRATHkaoj4bDHex5+KuOch7Q+uey12JQBoT1PIrSX76F8lK6JCRgtPAsg9Y6D58PFvWVAw1saI860lCD5jCdNbB7B+bmjbBlI2b2eticVbdDgBWOOx7j5DMwBp+MEVw31GPp0kDGju3MrFkFVFYa3HVXNJMmlTBzZgSzZhXQv7+djz8OIS2t7IipSD/SXj/SsvT6kcOh148cDr1+5HDpNSSHQ6+fjslcvwrnv56A0mKIiHINX4zbN5Tx/r3y/fdDWLIkuMnHHDu2jGnTiuranS7KY9AgR4d5/RzuwL6m/Prrr7zwwgv85S9/oX///p7t69ev5+mnn+amm27ihBNOaPHjNuaKK66oN1g0JyeH9PR0nnzySRITEz37TZs2jdDQUP785z83+jhNVaIfaHbfoc5gMIsKqLljHBgGAS++h2EY1My4H3Ptb1huvAPLsJHNfqyW0FFmSXSU84C2O5eaF6Zh/rAMy+XX43z7FQACZr6JERbeIo9/oPM43NkN7aYSXaQhwxIA3XphdOsFp7nauJh7cjG/X4b5/ZewfROs+AFzxQ+YgUGuIP3k0+G4oSQlWZg8uYT+/e1s2FC/Z35lpcGGDTYyMiIYOrSahAT1SRcREREREenoTNPEXJqJ+dZLUFMDvY7GMuGvGLGu0MW78jwhwXnAti2jRlVy4YUV9Vq2NPxktuzff//7Xy6//PJ6ATrAMcccw2WXXcZ///vfNgvRG4qPjyc6OpoVK1Z4QnSHw8GaNWsYO3Zsk/c73Nl9BzuDways7UMdGFR3/9p2Lqa92mcBcEeZJdFRzgNa/1zcr0UzLByCQqCqArO0GELDWvY4rXQeCtGlQzFi4zHOuxTOuxRz51bM7790Bep5uzF/WIb5wzIIDSPuhNOYnHoGGR+mkPGUq42Lu7XLXXdFex4vMzOYpCR7vR+UREREREREpGMx7XbMN/6F+dUSAIyTR2CM+zO5hSHMmeH6fdDd9zwx0UG/fo4m27bExztJT49h/PgykpLsTJ5cQlKSq/I4IcHp1Tq0/fdSbm3btm0jNja20ds6d+7Mjh07Gr2tpVRWVrJ7927P9dzcXDZv3kx4eDidO3cmNTWVhQsX0rVrV7p06cLChQsJCgpi+PDhrbqug+IZKhpUt82mwaLiA7WDRY2gYFeQXlUBZaU+XlTzKUSXDsvo1gvj4jTMi8bC5o2uQP3HZVC4F/OrJZhfLWFi936c/Y/reeOX04iLq+HppyPr/QDUp4+D5cuDVJUuIiIiIiLSQZmFe13tW35fB4YF49JrMc65GMMw6g0MdWtYee49ays720pKSjkAsbHOBqG5HKzo6Gi+++47Bg8evM9t33zzDdHR0a16/N9//73eoNPXX38dgBEjRjBx4kQuuugiqqureemllygrK6Nv377cd999nkGhfqF2mKN3iG5YbZigEF3aVmXtazEoBMLCYW8elLWffx8VokuHZxgGJPbDSOyHefl4yFrjCtS/+xLbjiySd9zL48cO4tkdE4AT6/0A9OijdVO2MzODGTlSIbqIiIiIiEhHYWavx/n841C4F0LDsNx0F7lxJzInY9+BoZWVrsuTJpXQt6+DjRutzJwZwfTphQQHm562LWrZ0nLOOecc3njjDUpLSxk+fLhnsOiyZcv4/vvv+dOf/tSqxz/uuOOYN29ek7cbhsEVV1zBFVdc0arrOCzuSvQgr579te1csGuorbQhd2uh4BAIc2VvZllJu/lMjkJ0OaIYlgA4JhnjmGTMi9MwM9/GXJoJ61YwkVtJPOFMgi4fS3Z5Io8+GrVPVfrSpYFkZoYwblwZAwfqPxsREREREZH2yrn8U8w5z4LDAV17YvnzfRjx3Vi71Opp2/L++/v2PfcuvAJITrZ7gvOkJLuqz1vQRRddRFVVFe+//z7fffedZ7vNZuOSSy7hoosu8uHq2on9hujVbb8eOXK5PxURFOyqRAdVoou0B0ZEFMaVN2L+4ULM99/E+c3npHb5HPOrL4i0jaZb8ARmzqybwO5dlQ4wbVpRWy9ZREREREREDpNZVYU5/1XMzz90bRhyCnv+eAezZ8eRllbWrIGhd9xRQlaW1bOPgvPWc8UVV3DBBRewYcMGSkpKiIiIoF+/foSFtewwwo7KbKSdi3qii09UuSvRgzHCIlwthdQTXaT9MGLjMa6bhHHOGJzvzsH49VtOqs5k6YhP2H70H1nZ/U9Muq/3Ph/RaziZXURERERERPybueonnHP/Bfk5AJSfeTXhV13Jmi+DPdXnzRkY6l19rrYtrS80NJQhQ4b4ehntU2ODRa21caBCdGkjpmnWVaIHh6gSXaQ9M7r3ImDiXzF/X0fVf18nePMq+m6ez1HbPyK77zWEW1MprXS9071zZwB791o0cFRERERERKQdMIsKMN96CfOHZQDYwztz0+f3M+X2Y0i22ButPt/fwFBQ9XlbKi8vZ+fOnVRX79t+ZMCAAT5YUTtSVACA4Q4toa6di0J0aSvVVWCarstBdT3RVYku0o4ZRx9L0F8fg9W/4Fz4Otat2dzR/wV2/28B96y8DxjOXXdFe/bPzAwmKcmuqnQRERERERE/YzqdmMsWY85/DSrKcGKh6rQ/smXQOD6b15sxWa6A8UDV5xoY6hs1NTX8+9//5osvvsDpbPx37bfeequNV9W+mJs2uC70Prpuoy3Q9dWhWW/SRtytXAzD9amIUNebOqYq0UXaN8MwYOAJWAYMYeu73xLy8Wy6BO/g1ZP+j3e2n8/uM26hKiDCM3B0+fIgVaWLiIiIiIj4EXP7ZqpeeQ7btnUAlHTqx5XvP8gt5yVQud4A9u173rD6fMyYEg0M9aEPP/yQn376idtuu41nn32WG264gYCAAD799FPKy8u57rrrfL1Ev2aaJmSvB8BIPKbuBs9g0fZRiW7uzQPDghET6+ulyKGqrA3Rg4JdmZu7J3q5KtFFOgTDYqH3JadhXjAU87251Cx+j8t6fEjOmu+4d9VfgTPqDRydPz+En34KVEW6iIiIiIiIj5hVVZgf/hdz8bvYamoodYRSetY4/rniClYVR5Ke3vR9G87CUnDuW19++SVjxoxh+PDhPPvss/Tt25c+ffpw9tln89hjj7F69WoGDx7s62X6r/wcKCly9UDv5VWJ3o7auZjVVTgf+T8ICMAy7T8YAQG+XpIcisrafuhBrtZZde1c2s+/rxZfL0CkPTACg7Bcfj0rzpnBxtLeJATn88qJk3l68FTu/vMOz0f+OnVykpERwfLlQeTk6K+XiIiIiIhIWzJX/YR96p8xP5oPNTXk9zyNs758m+/CLiXxaFc/3kmTSjy/w02dWsSiRXnMmuVq65KcbCclpcpTfS6+lZOTw1FHHeWqXAXsXpXTo0aNYtmyZb5amk/UFBVQs+B1zMI9zdrfrK1Cp2cfDJut7gabq6bWtO/bY97v5O50Ba3Fha43BKR9qnDNlCC4NkSPrC1ILdzr+sREO6BKdJGD0OOM/ry5+QVuiH+R4K/e5ZLuH5G75nvuXXUvMJKXXnL1dEpPj2Hy5BJVLIiIiIiIiLQBM2835vzXMH9aTgCwsyKBbSkTePG7s9ldGVyv+rxhy5Zbby2r91iqPvcfwcHBOBwODMMgPDycvLw8jjnG1ZYkMDCQ0tL20wqiJRT+OwPz848wv/mcgGmvNOMOrrDdSOhef7u7GriqsoVX2ApydtZdLi6A6E6+W4scutLaN0AiIl1fOye4+qNXVrjeHImM9tnSmkulsiIHISHByf/dVU3EteNZcW4GWaVHER+8h5dPvJOZg+9n3KW7AFdlQ58+1UyZEsWqVXqvSkREREREpDWY5aWUvPYq1fdNxPxpORgWvgq6nLO/nMflfzufJUuC97nPqFGVnsrz1FRXiKihof6pW7du5ObmAtC/f38+/PBD9uzZQ1FREe+99x7dunXz8QrbVtWaFa4LBfmYzeln7q7+DQmtt9kIrw0y20Flt+kdohcV+mwdcnhM92st3FWBbtgCIaaza1vuLh+t6uAo3RM5RD1O78ubm14gd9erDCt+izHdF5FS+AM5Cfcwc+aZ9fadNs3//2MSERERERFpL3J2Oln53GeMKHmV0PJiAHJjT6DknBtYu+FYyhaGeVq2zJwZwdSpRcTHO0lPj2H8+DKSkuz1Wrao+tw/nXbaaezc6QpRr7jiCh588EEmTJgAgNVq5Y477vDl8tpcQEwnanJ2uK6s+w2ST9z/HZoI0T3VwKXFLbvA1uAVopvFBRg+XIochhLXa81wv/YAErrB3jzM3J0YfZN8tLDmU4gucohcVelV5OSM5asPT6Pr4qfoH5HNv4fexZb4M1k16HZum9yT1NRKcnIszJkTpoGjIiIiIiIih8E0TVjxAxFzX+XMgu0AVMX05ObFd/B5XgrMrovYGrZtSUlxBYqxsU6F5u3Eueee67mcmJhIRkYGP/zwA4ZhMGjQoCOuEr0mP9dz2Vz1M8ahhui11cCUFmOapqfnvD8y3W8aABTu9d1C5PC4K9EjojybjLiumGt/UyW6yJEiIcEJ5yfy5p7noeYV+mS9Q+/cz+n81RqOj36CnTt7snevhYyMCIYOrSYhocrXSxYREREREWl38n/ZROmrr9Kz/BeCgPyqGHYcfw3r487n87mxTJpUQt++DjZutDJzZgTTpxcSHGySnh5DamqlWra0M9XV1bzzzjsMGzaMPn36ANC5c2fOO+88H6/MN0yHg5q9eXXX83Yf+D6eED2s/g3uILOmBsrLICy8pZbZ8rwD1uJCny1DDpP7Uw/1KtG7ur4qRBc5crir0qdMmcCqb87jmSH30ZsdzB92I9Ofv41/ZY8DIDMzmKQku6rSRUREREREmsks2IP57hyiv/6MGExqLDYW2a9kyhc3UvJpXfjnXXkOkJxs9wTnSUl2VZ+3M4GBgXz44YcMGTLE10vxD4V7wOmVIeTnHPg+FbVDc4ND6m02bDbXNvdQRz8N0c3y0vp924sKfLcYOSwNe6IDGPFdMQGznYToGiwq0oLGjStj4AWJ7LhuFhtjzsRqqeHeY5/hi8sm0DlwD336OFi+PIiMjAjWrrX5erkiIiIiIiJ+K2drFcvvmU/Nfbdifv0pBibv7jyX0z+dz20f/x8ljvrB36hRlSxalOcZGgp1vc5VwNQ+9ejRwzNY9Ii3J3ef66Zp7v8+lRUAGKFh+97mrkYv9eMZbjn1w1WzWCF6u1Ubohte7Vzo0tP1dedWTHu1DxZ1cBSii7SggQMdTJtWxOmjrLxsPshdK+6noiaIo8p/ZNHpf2Lp82tJT48BXFXpOTkWZsyIICdHfxVFRERERERyciw89Y9git77kOh/3MSwPa9h2Kso7zqAd499htt/fYxLb47wDA2dOrXIE5qPH19GcrKdlJQqtW3pIC699FIWLFjA7t0Hbl3S0ZnuVi79BoBhQHVV/Srtxngq0UP3vS28tq1Gif8OF/X0Q7fWFiEWFfpsLXKYGm3n0g2iO4G9GrLW+GZdB0HtXERaSer5lYx942LOm3AUQ358jHg2MffkP/NdzJ+4+o3b61Wlq1e6iIiIiIgc6Uynk8ovl3HxL28Qvt4Vnm0u68ET6/9M5u6zAdfww/0NDAXUtqUD+fzzz6mqquIvf/kLvXv3Jjo6ut4QTMMwmDJlig9X2Ib2uEJ0I64rZn4uFOS7qtMjo5u+T1ODRcFTiW6WFOG3Y0Vzd7q+9ukPG1aDKtHbJdM060J073YuhoGRNATzm88w1/yKMWCIbxbYTCp/FWklSUkOJk8uYdDoLjwV/AKzt1wKwCkFb/D2sJv4zz/K6lWli4iIiIiIHIlydhvMf3g11Q/+Hz0WT6dX6A4qgzrxY//bOevLd+h35SnMmlXoqT6fPr3QU32ugaEd29atW7FarXTq1ImSkhK2bdvG1q1b6/05UphFe10XYmKhc7xr24H6ojc1WBQw3BXBB6pm96UcV4hu9E92Xa+swCxt28p502539WaXQ1de5hpiC3VthNxqg3Nz9c9tu6ZDoEp0kVbiXf1wzvlOxr5xL8dcNIDBKzMYGrOSz86+msXxd/HnVy6gTx8HS5cGkpkZ4uqrPtDh49WLiIiIiIi0PvP3ddhemc3FuSsBKDfDmLXhWl7ZfDUVNa5hiBoYeuR69tlnfb0E/1FcCIARGQ2xCZhZayC/6X7xpt0ODrvrSkjIvju4K4LbOJQ+GKY7RO/dBzO+m6syfVMWJA9tszU4X3gS1v6K5cF/YsR3a7PjdijuN2qCQ1xDbb0Yx52AabXC9s2Ym7IwEvv5YIHNo0p0kTbgrkrvc9kpPB32Mj8VJBPsLOPC3Q/x2HGPM+2xIMaO7czcuWG8/nojAz9EREREREQ6kPwV29jwlydxPjGFqNyVVNYE8q/saxj2yXs8+/v1ngAdNDBUBMCsDdGJjIbOCa7L7nYnjaksr7sc3EiI7q4I9tNKdNM0684vvhtGn/6u7ZvWt90a8nbDb99DdTXmr9+32XE7HPenKBpWoeP6RIRx4ukAmJ9/0JarOmgK0UXagPcPeKf9MZrLv/03G/pcBcA1vefz/WXX8vITqwHXxxE1cFRERERERDoS9+84eevycf5nJtHPpHN06XJMLKyLPY8RXyyg7NzruXZCAKCBoSL78KpEN3ocBYC5bVPT+7uHigaFYFgC9r09Ktr1GO6Bpf6mYI+rHY3FAnFdINEdom9osyWY331Rd3n9yjY7bkdjbs12Xejeu9HbjbPOd+337ReYv69rq2UdNCV0Im0sKcnB7X+poNP1aaw86zH2VEUTU/o7I76ewDkJS9m5M8AzcHTtWtuBH1BERERERMTP7dlcQvhHLxL91M2YX3+KYTrJ3H0mZ3/xFufMfpRdlV2YOTPC07olO9tKv36uNpcNB4aq+rxju/baa8nOzm72/k6nk2uvvZbNmze33qL8gXcleq8+rss7NmM6mmgHW1Hh+trYUFHA6JHourB1E6bTD/9OZdeGqT0SMWyBGInH1G7f4GpV08pM06wXopO1GtOpN/AOyZaNABi9+zZ6s5HYH2PYmWA6cb40o+5TF35GIbpIG/P+we+NX4Zz3vK5/Lh3EIGOMl4aeicFL7/GX253/eA4f36IKtJFRERERKRdysmx8Mw0KJkzh36vXceNiW9icToo6z6Id499hlt/ns75N3b2DAz1rj7XwNAjV2VlJc6DDHUP5T7tiWmvrhsSGhnjaucSEgYOB+za1vid3JXoTYTodO0JgYFQVeEZ4OlP3BXJxtHHujb0PMrVDqS8FPPtl1s/+N/6O+zeDrZA13NYUQ7bNrfuMTso8wAhOoBx9U2u13V+Ds6nHjzw0Fwf0GBRER8aN64MCKdy9OOs+PQ/DMp9h1v7zOaCAb8y5sNpdOoUQkZGBImJDlJSqlRxISIiIiIifi0nx8KcOWFcc3kepe99wJ/WLCA0qxSAXwsHMH3DBJblnwIYQP2hodnZVsaMKdHAUOG+++7z9RL8i7sy12qD0DDX355efWD9Ssytv2P0TNz3Pu6e6E1VogcEQM8+8Ps6zC1ZGF17tMbKD5mnrUdtiG5YbViuvR3nM49ifp6JmZeDJf3+xlvVtMTxv13qOu6QUzBzd7mqqYv2Ake3yvE6KrOyvO5Nmt5NP3dGaDiWSQ/ifPIe2L4J598mY7lhMkYbDpE9EIXoIj40cKCDadNcQzymLErn2Z9PYnryI/RgJZnDx5K+8DHgJNLTY5g8uUQ/QIqIiIiIiF/L2+mgeOF7RG1+hdjKYrDBupKjmb7+NpbkjsAdnrtNn15IcLBJenoMqamVCs6Fyy677JDu16lTpxZeSfN9/PHHvP/++xQWFtKjRw/Gjx9PUlJSyx2gNkQPiOmEYRiYponRq4+rT3f2ekj5wz53Mcv3H6IDGEf1c4XVmzfCsDNbbr2HySwvc1WCA0bfuufRGHwSRtoEzHkvwaqfMH/6BuOk4S1//KoqzG8/dx3zlJGYixd6thv7u6Psw1z+GZgmdOqMERm9332NLj2w3J+B8/knYMtGnP98GOPUMzEuvwEjIrJtFrwfCtFF/ERqagVj557N6BviSVn9KPFk88YpE5m+/las519Knz4OpkyJYty4MgYObKLnmYiIiIiISBvLybHwxuxArj/mXfosmccDSflQCUVB3bnv29tIvPxUBpxgYclMg6lTi0hJqSYry0p6egzJyXZP25akpNbvcyz+7/LLL/f1Eg7K119/zauvvsqNN97IMcccwyeffMLf//53nnrqKTp37twyB6kN0S3RsZi1m4wBQzCXvIf5y7eYf7rVVVnurdz1CRAjJKzpx+1zDHz6P8xvPsM852KMTnEts97DZH6xCGpqXC1nGqzJMmI0zqICzP+9ifnhW5gnpmAYLRttm998CqUlrvYiySfAFx+5bqiqaNHjdHTm+lWY818FwDhnTLPuY8TGY7n7Scz5r2J+9gHmN59jrvwJ48obMU4Z0eLf64OhRssifiIpycHkySWszksk5f3XeWvbH7Hg5O5jnmPI1w9w/18CmDs3jNdf389/gCIiIiIiIm3IdNaw58OlXPzLdYS//xxBFflsr+jCXSvuZ8i783l/12hm/jOq3sDQ5GS7Z2goaGCotG8ffPABZ511FmeffbanCr1z584sXry4xY7hHrQYEO1VbX/sYFeP8JIiWPvbvnfK3eX6Ghvf5OMaJ5wGR/WD8jKcL2f4xeBMc9c2zCXvAmCMvrTR0NQ4+49gscCOLVC4t2WPX1aK+eHbruOMugjDEoARFOy6saqqRY/VmszyMp8MjDWrqzB//IqaZ/+O86kHwF4Ng07COOuCZj+GYbNhueomLHc/Cd17Q2kx5ssZODOmYq79zWevU1Wii/gJ9w+OOTkWkpODSE9/kOihxzJi1z85O3453/7xT1z56TRSU7t6+gympZXpB00REREREWlTOTkW5swO4frjlxC5dA7H7N4OoZBbFcusjdfz5rYxVDsDPfuPGlXJhRdWeFq2ABoaKh2Cw+EgOzubiy++uN72QYMGsX79+kbvY7fbsdvrPnVhGAYhISGey40xigsxcYXoNbX7GDYb5okprv7g33yGpWHv6N07XPt17dH049psGDffRc3Dk2DDash8B+OPVx3otDFLSzA3rccIDYfEfgfXl7yqksrffsBctxpnQT6G1YbpsEPubszcna7WMqYTuvbE0kTlsREegTOmM+zJxdibh9HpwBX/pmlirv4Fc90K2LUNs2gv2O2ukNdhB7sDzBrXtqpKSOiGZfgo1/GDa78/1ZWe9TT82ugx83a7Qt+cnVCQ73rcqkrMqkqorgZnDTidtX9qGnz1uuw6AXB/DsF0X6+94r4YEIBxdBJmRRlszoLQcCzX3Y7l+FP3+9x4n4tZXoa5NRu2b3K9eVNaDGWlUF0F9mpMz3NWve/z57BDTf3OCcaQU7DcMgXDcvB13EbfJIypT2EuWoDzg7dg3Qqc61ZARBTGMQMhvpurRYzNBrYgjFNG1DuflqYQXcTPJCQ4SUmpYvLkEqr6/IGL7j2e+efeSXj5TuafeiMrf7iN5Xv+SEZGBEOHVpOQ0H7eCRURERERkfbJU8gztpTy73/i7O/fILI2JKwMiCBj9XjCzk8lemAw1TMDmTq1iPh4J+npMYwfX0ZSkr1eyxb1PpeOoLi4GKfTSVRUVL3tUVFRFBYWNnqfhQsX8s4773iuJyYm8uSTTxIX13QrlYIaO6WAJSaWLl26eLZXj/kTOZ9nYv60nDjbPVg711Wd78zfRQ3Q+bjBBHXt2vRJdO1K2Z/vYe+MB3H+7790Hn4WQQMG77Obaa+meN5/qPj2CxybsjwhbsiwEcTe/48DBpc1xYXs/ccDVP7yHXlelcRmI/sGDT6J2CmP1a+8byC3aw+q9uQSVVNN2P7OD3CWl5L/yGSqVv683/3cjKAg4u55nKCjXANbC2I6UQqEWQOIbnAs7++Hm1ldRcHz0yhb/F6zjtdiahyYa3+tu15eSsAHb5Fw3pgDf3+KCrDNeZbyLxa7wvvDEBDfldAR5xI6cjSBR/U9rMcC4Kb/w/HHyyl+5zUqln2Cs6QI88flQP3XT7c/uuYpNPY9aQkK0UX8kPsHyilTolhb0p9T3n2D6YMeJrXL5wzdMItNn2UTbLmXzMxgkpLsqkoXEREREZFWlZsbwDevrufmon/SedcaiIISexgvbf4TL20aS4kjHGbV7Z+dbSUlxTXYMDbWqdBcOrRGq6WbCC3HjBnDBRdcsM9+eXl5OByNzz8zz78K64jziOjWnd27d2O6q5BDo6DfcZC1mt2vPkPA2Ntc+1dVUpOXA8AeWzDGrl37P4GkE1wDNL9bSu7z07D+9R/77FLzxguYn31Qt6FzPOTnUvHtF+xc8gGW5BObfHjTbqfmybtd1dFAQFwXnF17QkysqyLbZsOI6wLxXTF6HU1NXBdyK6qgoul110S43rgo/H0DxcfsG/p7jm2aODMecIXLQcEYJ5+B0bOPq9d6UBCG1Qa2QLBaXS1iDAMiotgbHgm1z1tNjStrKd27h4rabYZh0KVLl/rfD/faXpiG+cMy12P1Ow6jZyJGbLyroj0o2PUnMAgsAa4K7YAAMCyu4wcEuL5aLGCpvexmGK4/3tddF1yXS4sxN6yCwCCMxP7UPDwJ+5bf2bV8KcbRxzb5HFFSBP/4K44dW13XY+MxevWBmM4Y4ZEQHuFasy0QrLbayu/A2ufOVrfdfT08kgrDoAI8z+Hhs8Cl12FcdA2WrNWwbRNm3i5Xlby9Gqqr2b1nL127dm30ewJgtVr3+2bVgShEF/Fj48aVAZCaWsW6tffx6NzB3Jf0Ty7r8SEDIjewovsDLF/eRVXpIiIiIiLS4tzV5+NH/EzX92bz1rBfYRc4LEG8lHUFzlGX0ufCMK7faDJzJkyfXkhwsOlp26KWLdLRRUZGYrFY9qk6Lyoq2qc63c1ms2Gz2Rq9rbHgD3AFq9GxBETFYJbvqrefJfVynDNXY36eSc3RSVhOGYG5e7vrxvAICIto+nG9GJdfh/n9l5C9HmfuLleo7V5X9npPgG5cfTPG0BSMqBicb7+CufhdnB++jTFwaFMPjfObz1wBelgEAXc8SrdThrNr164m19Wc9bp7vZv5ufvd39yw2hWg2wKx3PU4Ru+jD/zYDdcQGOT6Wlmxz7FM06y3zdy4pjZAt2CZ9CDGccc363gtIroTRo+jPFeNYSMxv/kM53dfYOlzTJN3cy55D3PHVugUh+XWuzES+x/2Upr1PTwUAQEYxw6CYwfRVG19w+9JS1GILuLHBg50MG1aEQCZmVHM3ZTGyqJjefb4vzIgMovuv9zG/736KHC6qtJFRERERKRFbf16K8d98SbR65YBUO208sbWMTzz+w3kVnWGBi2fk5PtnuA8Kcmu6nPp8KxWK3369GHFihWcfPLJnu0rVqzgpJNOapM1GANPwDjvMsyP3sF8fRZmfDfMnNoQvUuP5j9OVAwcmwxrf8P8/kuM86/w3GZ+u9S1z8kjsHgNiDRGjMZc/C5szsKsqcEI2Lc3uul0uvYBjNTLMHo1L8Q+oE6uimJzb+5+d3N+4mqpYgwb2ewAfR+ewaKVB9zVuWiB63jD/9C2AXpj+h8H33yGmbOjyV1M08T8/gsALJdd1yIBekelEF2knUhNrWDu3DDGPnw0i7c/xzFf/p0TY1bwnxP/wsysGwhLvJLly4NUlS4iIiIiIocsJ8fChy/v4aqwlzhh1TJIgBrTwtvbL+CfG29ke0U3z76jRlVyxx0lZGVZSU+PAdTrXFpeeXk5WVlZ7N27l+rqaiIiIujRowe9evXy9dIAuOCCC5g1axZ9+vShf//+fPLJJ+Tn5zNq1Kg2W4Nx8VjMLRthza84/35H3faDDESNk053DcJc+SPUhuimswbz569dtw8bUf8Onbu4AuaqSsjdCV177vug27Jh93YIDsE4/dyDO7H9rTU23tUPe09ek/uYNTWw8kfX/medf+gHqw3RzWaE6Gza4Dpeyh8O/XgtxOic4HqO8vfzRkP2esjPxQgOwRjcNm/8tFcK0UXaiaQkB5Mnl5CSUsWMGV154NsXuD/paa476i0m9XuZLz5eTfqvfwMgMzOYkSMVoouIiIiIyP55BoamlREfsAvHK/NIy/6UAMP1ydb3dp7DnlPTKOjfk+0rI/YZGOpdfa62LdJSampq+Pbbb1myZAnr16/H6dz3k9YREREMHz6cc889l64HGCzZmk477TRKSkqYP38+BQUF9OzZk3vvvfewei8fLMMSgOXmKTj/8zT89r1rY1wXjAuuOrjH6XOMK3TduRXTNF392rPXQ1EBhIZBUv3e44bFAt17Q/Z6zO2bMRoJ0c0tG10X+hyDERJ68CfXFPcQ1T05dWttaE8OOBwQGAjdeh/6sZpZiW4WFUBxoas/uVdbFZ/pnOD6uicH0+l0fb8aMDesAiB46GnYg4Jbrw1LB6AQXaSd8K7ocFeld7rtRj5b24dTf89gRNy3LDtvLGO/mE6fPt1ZujSQzMwQxo0rY+DAxoeTiIiIiIjIkS03N4C5z1YwzvYvnGsW0aXGAQYszjmDf2y4jXUl/eDXuv0bDgwFVZ9Ly/rxxx+ZPXs2ubm5DBo0iKuvvprExESioqKw2WyUlpaSk5PDhg0b+OGHH/j4448588wzueqqq4iMjPTJms8991zOPbflqqwPhREWjmXifZC1GnPtCoxTR2KEhh3cgyR0hwArVJTD3jyIjcfcttl1W98BrkGSDY/b4yjM7PWwfTOcdPq+j7k127Vfzz4Ht5YDial9k6K6GspLISxi33121bYxie/eaIDcXEZQiOvNhQNVom/b5Pqa0A3DHbz7Ukxn12BShwOKCyA6dt99drla/9gS+2Fv4+W1NwrRRdqhelXp347mia8H8cIJU0gM28b8YTcw9T938+j2iz37u/uqi4iIiIiIuKvPr7loOwlfvsOykR8RvLIagO0RJzBh0e2MGN+bc4fDupnUqz7XwFBpbc8++yznn38+o0aNanI4Z79+/Rg+fDjXX389K1euZMGCBSxevJjLLrusjVfrXwzDgP4DMfoPPLT7W63QpTvs2ALbt7iGd9b20za6dG/8TrUV1+b2zY3ebNaG6PRq2RDdsNnAagOHHSorGg3R3QNWja7N7w3fqOBmVqJvd4XoRo/EwzteCzECAlxB+p5cyM9pNER390u3+UPlvJ9TiC7SDu1bld6PNRf9k8Bfp9E9/xumDfobE1N/5A8vTeXUUyuZMSNCw0ZFRERERI5g3m1bNv5SSvCHbxG1YR5WZxUEwPd7h/CPDbfy7d4TAfh1Zt19s7OtjBlTooGh0iaeeeYZwsKaX0GdnJxMcnIyZWVlrbiqI4fRvTfmji2YOzZjDD4JM2en64aEbo3v3623q0p717Z9bjOdNbBjs2u/Fg7RAQgOgdLaEL0x7oGaTb0B0FyB7hC9ieO4uSvR/SmQ7pwAe3Ix83Mw+g6od5Npmq5+9YC1x2G0uzlCHPpnGUTEL7ir0k8ZaSP7nKk8uX4iJhZ6b1/E/FNvZPeaAjIyIli+PIicHP2VFxERERE5EuXmBvDyLCfmu7M5fv513Hr0bKzOKn4uGMjY75/hsm//7QnQAaZPL2TWrAIAUlMrPcG5CnOktR1MgN4S95MGuteGqTu2uL66K9ETmqjmjq1tq1KwZ99+2rm7XO1WgoIhvvEQ/rAEh7i+NhGim7WtSkg4zBDdU4m+/9lzZn4O0AKV7y3IcPdFr11bPSVFUF4GhoG1WyNDYaUeJWoi7Zz3D7OZH4Xx7O/Xkfb9P9lbHcWgqLVcuv5WTu30I+npMfzrX+HMmBGhMF1ERERE5AiQk2NhxowIcrdUEPb5HJaPvJC4H98iiApWFCWxoNvjfH7SP1mWP4ypU4tZtCjPE5wnJ9tJSanyVJ+L+MKVV17Jxo0bG70tOzubK6+8so1X1PEZtWGqmbMT026H/FzXDU1UohPdyfXVYYfS4vq3Fbn+PSGm82H1JG/SAUL0ulY0hxlqBzWzEr209hM6EdGHd7yWFFs7gHVv/r631VahExuHxR96uPs5tXMR6UDGjXN9fO3UU/vxzpp/cepvD5EctZ65J09kWfwtbOs5hvunxjB0aDUJCft/B1VERERERNq3DSuqqX7vQyI2zibWUQo2WFPcjxkbbmFJ7ghYbnj2zc62cuut9dthqG2L+DOn0+nqAS4tyz2ws3AP5O8G0wlBIRAV0+juhtUGkdFQXAgF+RDh1cfeHapHtNLA1/2E6KazxlVpDRDT6fCO4w6YHQ5Mh8PVO74x7vMNb2TIqa/UrsUsL93nJnerniY/ZSD1qBxVpAMZONDBtGlFZGcH8rfn+nHJNy8zf3sqVksNZ+Y/R8Q7Mwi2VJKZGeypSlFVuoiIiIhIx+D5GX9bNc6PFzDo7euYcszzBDpKySpJ5Lafn+C8r+ayJHckYDBqVGW9li2AhoZKu5GdnU1oaKivl9HxxNQOnywuBE87lK77f8MiprPra8GeeptNd4gd3kohem24bTZWIV5RXnc5NLxFjgNAdePDRc2aGnAH1a11vocipPbvSHkjMwPcoX/0Yb7JcIRQJbpIB5SWVkZiooP09BhWn3Qnv30ygIeOy2BM90X0j8hmZfcHWL48gYyMCFWli4iIiIi0Y94DQ/N21lC04H+EZ/8Hs7qAcCC7rBdr+1zD+r5n8uGyaKZOLSI+3kl6egzjx5eRlGSv17JF1efia5mZmWRmZnquT58+HZvNVm+f6upqioqKGDZsWFsvr+MLjwSr1VV17e6L7l1d3piYWNiyEbMgn3pRe21Ia7RWqLy/di7u0DgwyFUtfxgMqw0CrFDjgMrKxkN570rvww3tW5AREu4a/Or9poJbWe2aQzVPoDkUoot0QAkJTk//ws2brSzYchVrS/rx/PH3cFzkBrr9PJE/v/IYMIzMzGBGjlSILiIiIiLSHuXmBvDM00Fc2eUd+v7wXx4csAeqYWt5d57OuomFO0dT80Xdr/7Z2VZSUlxhSmysU6G5+J3IyEh69HC1l8jLyyMhIWGfinObzUavXr1ITU31xRI7NMNigehYyM/B3LHZte0AobARE+sKahtUont6hLdSiG4Eh7iO22iI3sIBcVAQlDugqvFKdE9Vd2g4RkBAyxyzJeyvEr3Cte1A319xUYgu0kG5fxheujSQBQtCSXu4D4u3P8eAZY8yJHoNs0++nSfWTSQu8SKWLg0kMzOEO++EhARfr1xERERERPbHU31+dRG27xaxdMRbdF26G4AdFQms7p1G5fF/oHt2MDUzrUyfXkhwsEl6egypqZVq2SJ+bfjw4QwfPhyAhx9+mBtvvJHu3bv7eFVHmBhXiI67Ej3sACGru496QYPhle52LgeqZD9UwbUB8f4q0VsqIA4KcT1mE+1c6t4w8KN+6FD3JkJFIyG65zlSJXpzKEQX6eCSkhxMnlxCSkoVM2Z048Fv/82jxz3JVT3f56/HzuJ/H6zjpsenUl4TSlgYPPSQr1csIiIiIiL7s3a1wda3lhKy5QU6V+yGENhdGcesjdfz1vaLqHYGwqt1+ycn2z3BeVKSXdXn0m48+OCDvl7CEcmI6eyq8N69w7Uh9ADBcG0fdbNhT3TPoM3W7YneaHV4a1SiQ+OBPXgNFfWjfugAIU2H6KZC9IOiiYIiHZz7B+SEBCepqRVUOYMIuenP/Nh/EtVOK3/stoTvLx1H79BtXHIJGjgqIiIiIuKHcnIsZPwjlMLFX3LsW7eSMfhhwip2k1sVy0Nr7uD0pe8ye+vlVDsDGTWqkkWL8jxDQ6H+7wUi/iwrK+ug71NdXc22bdtaYTVHKPdwUbew/Yeshnv/wobtXHzXE91s6Ur0sNo3EtxhecPjubeH+WklusOBaa+uf5s7WA9RO5fmUEomcgTxVKUPr6bipPO46rt/URnUicjSzXyQMo6KH5bz1VeBZGREsHbt4Q3eEBERERGRQ+dd3GI6neQt+przfryZiLf/QZxzG3uro/ii8y28OWA2r2y+min3VXpC8/Hjy0hOtnvmJKlti7QnDz30ENOmTWPFihUH3LewsJD333+fP//5z/z0009tsLojREzn+tcPFES726pUNZi3VtLK1dm1Ibq5n57oRgtVWRu1z4nZsGWNW207F8Pf2rkEBYNRO+61YV/0cndPdFWiN4fauYgcQbw/tjljRgg/Fgzh9My5PH/C3ZwYs4Ljv/4/Pt1wKwbXkZkZTFKS3dVrMa1MFSsiIiIiIm0oNzeAjIxwLj36M5y/zSZp+2aIgMLqSF7YlMarm6+krKYu+Gg4MBRQ2xZpl2bMmMHs2bN57LHHiI6OJikpiT59+hAZGUlgYCClpaXs3r2brKwsNm7cSHh4OJdffjl/+MMffL30DsMzKNR9/UAhemBtq5PquhDdNM26qu2I1mrn0nQleov3RO9U+8ZCw+GpbmX+2c7FsFhcw0XLy1yV51ExdTe2dMubDk4husgRatw4138oqakWflvzJOve+zdpvRYw5ZjnSY5aR07vySxfHkxGRgRDh1aTkFB1gEcUEREREZHD4RkYOraU8M3f80HKf+n54VoAqi1hPLNuLLbRf8R6XDhlM8OYOrWI+HinBoZKh9KlSxfuuusutm/fzuLFi/nll1/45ptv6u0TGBhI//79ufnmmxk+fDg2mz5J3aJi4+tfP9Bg0UZCdKqrwN0+pJWCZSM4xBX2VzVdid5iIbq7Zc3epirR/bSdC7j6opeX1atEN01Tg0UPkkJ0kSPUwIEOpk1zTcrOzIxi7qq/sqJwAI8e9yTndfmcrGWbuenn6UAM8+eH8NNPgapIFxERERFpYZ7gPK2MtWsC+OH11Yzb/Sy9CtfSKwrKHCG8svkqXtyURpE9Cp6pu292tpUxY0o0MFQ6pB49enD99dcDUFxczN69e6muriYyMpLOnTtjtSrSajUHHaIHur7aqzGdTlf1c4krb8BqqxsA2tKCax93v5XoLdfOxaTpdi5mbTuXVqu6Pxwhte12KsrrtlVXQ43Ddbml3mjo4PQvjoiQmlrB3LlhXPDExXz0c1dO+eVh+kVs4uMzr2XC94/QqdNQMjIiSEx0kJJSpSBdRERERKSFuNq2RHDxgO/p8f5c5p68AgqhoiaI1zZfwb82jWNvdd3H76dPLyQ42PRUnys4lyNBZGQkkZF+GE52VGERrlYp7grv5rZzAVf1eVAwlJV6Hstw9+Ruaftp52K2dCV6dG0lelPtXDw92P0wkK59I8EsL8PznaiofX4sltZ7k6OD0WBREfEMHD3rLPguZyDnL5/Nd3uPJ8hZxssn3kHEF3MxcH1MdM4cfcxHRERERORweA8NrV63ljdPvo2jFtxNomMFlTWB/BR9Ga/2fYO/r5/ExLstLFqU5xka6j0wNCnJ7uMzEZGOyDCM+hXVBwqGbYF1l90tXdytXAID992/pXgGmjZdid5iQzM7xbm+Fu3FdDbSMste+++xrRXP91CF1D4HFV6DRb0q9VvtTY4ORpXoIkJCgpM77yyla9cIzj+/krlzY9mQ+ndsa1/khKKF/KXfv0mOXMfaU6fQu08gU6ZEMW5cGQMHOny9dBERERGRdmftWiufvryFq/OfZUj+D9AZqp1W3tw2hmc2XkdOVV0rhexsK7feWlbv/qo+lyPJmjVr+Oijj9ixYwfV1dX1bjMMg1mzZvloZR2cO6CGA1YqGxaLKzy2V9eF6I7aUNnaiv3qg/c3WLSFK9Gjol1V2zU1UFxU1yPdrS3O9xAZIWGu3vH1QvTa5ydEhZLNpUp0EanHXZW+ZXsIF795H5N/e4jKmkD+kLCM81dOZOY9RcydG8brr+sfWhERERGR5vCuPDe3ZhM77xH+lzKehPwfsDsDeGPrGM5Y+i5TV99NTlU8o0ZVeirPU1MrATQ0VI5I69at49FHH6W8vJwdO3bQvXt3OnXqRH5+PgEBASQlJfl6iR1XaF2I3qxK5YbDRd2hcmsOfXX3RHc4MB0NPpnT0j3RLQEQ1cl1pbG+6I7aIkM/DNE9PdHLvXqie54fP2w/46cUootIPe6qlltvLWXWrALe2XEBbx/1T7ZXdKFP2FY+PvNaRid8RmpqZb1fBkREREREpI73z8q5uQF8+O8cqmc9gfPR/2OA/WtqTAurIkbzWp/XuWfVfdxwV4gnOB8/vmyfli3un9M1n0iOJPPmzWPkyJHcd999AFx55ZU88sgjPPnkk1RWVnLyySf7eIUd2MFWKDcM0e1tUJnt7okOUFVZ/zb3EM2QUFpMRJTrq3toqjdPJbofNv1wv5Hg7oOOqz96vdvkgJR8iUijEhKcnh/co5ITuWD5bPI6DcFaU8GLQ6cQ+9VrLP/KSkZGBGvX+uE7rSIiIiIiPuQeGFq0djvdM//OktOvolvOVzhNgwU7zuOsL98m9a2/8chzxwCuti39+rkqGWNjnQrNRYBt27bVC8qdTtffh969e3PppZcyf/58Xy2twzP6Dzy4O3hCdFfLHbMN2psYVisE1IbWlXUhummadT3ZW7JHeVDtOdqr973Nj9u5eN5IqPBqe+Nu7aJ2Ls2mEF1EmuT+wf2bb4LZWx3DyXP/xYvZYwEYsOUNIl9/hChrMZmZwapKFxEREZEjnvfPxOXZ25g15K/0mXsbURuX4TQN1oWfydLT/82mkVPYVNab6dML67VtUcsWkfqqqqoIDg7GYrFgtVopKambBdCtWze2b9/uw9V1bMZZF2BcnIblvhnNu4N7gGhbVqJDXb9293HB1bfcrSWPX/tGgVlVte9t/hyi1z5HZrVXtX7tmx1Gaw5+7WD88DMGIuJvxo1zvUOZmlrJunXXk/5yEhnHP8qZ8V/zQco1/NjlQZYvTyQjI4KhQ6tJSGjkPxQRERERkQ5u7VorC1/Yy6XFz3HCjs84sZsJwIe7zuaprJvYUNoX5tXtn5xs9wTnSUl2DQwVaaBz584UFblaZ/To0YOff/6Z448/HnANHA0PVz/n1mJYrRjnX9H8O/iiJzq4AuLyUvAOiL37o7dCiN54JXptT3SbH0atgbVvNFQ28hz5Y+jvp/zwOysi/mbgQAfTprl+cMnMDOa9naPJKknkxaF30TtsB3Erb+euNx4AziEzM5iRIxWii4iIiMiRYdcu+Mc/whl3XhZhb8/nszOWELDTCQZ8tPtMns66ibUl/QEYNaqSO+4oISvLSnp6DICCc5H9GDBgAKtXr2bYsGGcffbZvPzyy+zYsQObzcZvv/3GBRdc0GrHXrBgAT///DObN2/GarXy6quv7rNPfn4+L730EqtXryYwMJCUlBTGjRuH1R/7Yrc2d5V2dRUGeEJao9Ur0WuD7aqmQvSW+14YgUGYUL/qveEx/TCUNoKDa9ft/Rz58SBUP3UE/q0WkcORmlrB3Llh3Pb3eJbufIajPnmSM+K+49nj/0py5FqsidewdGkgmZkhjBtXxsCBDl8vWURERESkxeTkWJgzJ4y0tDK6dDFZu2w73T55mej1H3KC6QrPN4adxjedxnNf5glMnVpEfHwB6ekxjB9fVq/6XG1bRPbviiuuoLTUNQzxnHPOobq6mmXLlmEYBpdccgmXXHJJqx3b4XAwbNgw+vfvz2effbbP7U6nk8cff5zIyEgeeeQRSkpKePbZZwG4/vrrW21dfqupwaKtXYnurrL2brHiDrQNC0ZAQAseq8E51jJN079DaVWitwiF6CJyUJKSHEyeXEJKShUzZsTywA//ZMoxzzHh6Ne49ejZLFu8nolP/p1Cu2s4hbuCXURERESkI3APDD1/2BbiFs2lz1ef0a9HDZjwae5wnsq6mRVFAzz7Z2dbSUkpB1wDQ0HV5yLNFRkZSWRkpOf6BRdc0KrV596uuMLVymTp0qWN3v7bb7+xfft2nn/+eTp16gTAuHHjeO6557jqqqsIDQ1tk3X6i32qtNsqpHVXojdWZd3SrVWaCNE9x4MWrXxvMcHuvvGNheh+uF4/pQmAInJQ3D/wJyQ4SU2twEkA3f+cxtfH3U+ZI4TTO3/PNxemcVzkOlJTKzVwVERERETaPe+faa0luTw+8DGOfu0GzK+WEEANn+eextyez/FryqOsKBrA1KlFGhgq0gIefvhhduzY0ehtO3fu5OGHH27jFdXZsGEDvXr18gToAIMHD8Zut5Odnd3k/ex2O+Xl5Z4/FRUVntsMw9jvn+bs46s/7oDZqK5yXff0RA9s3fMIqqtE92yrqasKb41zxH2O7vOoqQvRjUbO1+d/gkJqn6PKunNxr9lm8/vX1kF9j/ZzHodLbzeIyCHzrkpf22k4Fz0/kHdHTya8fCcLT72BX3+ezPK9Z2ngqIiIiIi0O95tW9autfLGc+VcVP4CR2/7iP69HGDCl3mnkJF1Cz8XDoIf6+6bnW1lzJgSDQwVOUxr1qypFzJ7q6ysZM2aNW28ojqFhYVERUXV2xYeHo7VaqWwsLDJ+y1cuJB33nnHcz0xMZEnn3ySuLi4Zh23S5cuh7Te1lYQE0MpEB4YSFTXrhQGBVEChEVHE9O16z77t9R55EdFUwFEBgcRUXuc6spScgBLYDBdGzn2oSqK7UwxEGoNoFPt+rt06UJNUSE7a/fp2rMXhsW/igjtpoPdgFFd7Xk+9tpslAGRMZ2I9DqXjqC1zkMhuogcMu9fBmbMCGFDaWdOfXcOM4fcz1nxXzNs7eO8lLkZqzGJ+fND+OmnQNLSykhIcPp45SIiIiIi++du25J62g4C3pnPshEfELTVVVm5PP8kMrJu4YeCIZ79p08vJDjYJD09htTUSgXnIq2soKCAIHcrj2aaN29evQC7MY8//jhHH310sx6vsepW0zT3W/U6ZsyYei1p3Pvm5eXhcDQ9U8wwDLp06cLu3btdPbj9TI3d9Umbkr35lO/aRU1RIQBlVdVU7trl2a+lz6OmNl4ozsultPY45i5XpO20GOzyOvbhclZVA1BeWED17t2e83DuzXftEBDA7pycFjteSzGLil1fK8vZuXMnhmFQU+xqvVtSUUm517n442uruQ702rJarc1+s6oxCtFFpEWMG1cGQGqqnfVrH2LlW28xqd/L3Jj4JsdFrmd51FQyMnqSmOggJaVKQbqIiIiI+BXvyvOEBCfF2wt4MOl1jn71Hfo77RAA20IG8XWn67gr83SmTi3i0ZQ88vPjSEuj3sDQpCS7r09HpN364Ycf+OGHHzzX33nnnXp90QGqq6tZs2YNiYmJB/XYo0ePJiUlZb/7NDdki46OZuPGjfW2lZaWUlNTs0+FujebzYatiWGbzQkwTdP0z6AzMND1tbrKtb5qV+BMgLXR9bbYedS+kWJWVXgez7TX9WNvyefKrD1H032O1J6Hff/n6mum+80m08SsrnK1pal9jkyvNfvta+sgtdZ5KEQXkRYxcKDDM0Q0MzOKuVm3sar4WJ4a/CCnxv5M7823sjRqOunpA7j55lLCw01VpYuIiIiI33BXnh/bLY+TCv7L8T9/yLDEKnDC93uHkJF1C1/vORFwVY1mZ1u57bZyvIscVX0ucvi2b9/Ot99+67m+evXqfSq7bTYbvXr1Yvz48Qf12A0HlR6O/v37s2DBAgoKCoiJiQFgxYoV2Gw2+vTp0yLHaFc8/cJrA2VPT/RWHiwaWNcT3aO1hpo2PMfWPl5LCfT6xEZVJQQGYda00vDVDkzPlIi0uNTUCubODeP09CG8veM5Tl/9IH3Dt/DOsBtZ2u0v5PYaxf33R6tPuoiIiIj4lHf1eUB5IX895g3OWPw2odZKMODHgkE8lXUzy/JPAQxGjarkwgsrPC1bALp2RUNDRVrQmDFjGDNmDABXXnklDz74IH379m3zdeTn51NaWkp+fj5Op5PNmzcDrn7LwcHBDB48mB49evDMM8+QlpZGaWkps2fP5uyzzyY0NLTN1+tzXkM3gbYL0d1V1tWVddscdYNFW5IRGIQJdefY8Hitfa6HyLAEuD4pUF3tCtEjovw/+PdDCtFFpMW5B45u3WrjxRcHEmF9jacGP8A5CV8yOudJXv0uG5sxmczMYEaOVIguIiIiIm2n4cDQV2bVkFo9hz5b3uWYo10hTEHUsXwadh2TM89i+vQirgguJD09hvHjy0hKstdr2dK1K9x5Z2mH+Ai8iL956623fHrsL774wnN9ypQpADz44IMcd9xxWCwW7r33Xl566SWmTp1KYGAgw4cP55prrvHVkn2rNkQ3awNms61C2iB3Jbp3iN5KAb6twRsFDY/nz4F0YHBdiA6edi5+vWY/oxBdRFqc+2OsOTkWkpPtpKfH8O2QB1n5xTzu6P8C4496mwGRWWzoeR9Ll0aQmRnCuHFlDBzY9BAVEREREZGW4G7bMvqMPOzz/8fXZ84nPLscgBVFSczYcAuf56XgbtuSnFzX3zw21tmgZUvTwwNFpH2bOHEiEydO3O8+nTt35p577mmjFfm5hpXobRXS1rZzMb3auXgC/IAWjj29+r7X0x4C6aBgKC2uC9FrnyPDqmi4ufRMiUirSUhwkpJSxeTJJWzebOOljTexqvhYZg6+n5M7/Uqv7ydwy7+m8UthMoCnp7qIiIiISEvyrj4v3FXG5H4LOPqVuRzrKAcr5AT14+tO45mUeQ5TpxZzd0o+WVlW0tNdfY7dA0PVskWk9U2cOHGfHuhNMQyDWbNmtfKKpDn2aXXSZpXobdfOZZ83CjzHc5+rH8esDSv2W+s56sD8+LsrIh2Bu1Jn6dJAFiwI5eKpA1m291n6f/Iw/SI2sTDlJu5dcTepqWfU++VGA0dFREREpKWsXWvl3/80ONcxjyFZCzitXyk4YE1xPzKybmFxzgi8B4beemtZveBcA0NF2s6AAQOaHaKLH2miEt1o5T7hRlCwK7xvi3YuQe24ncs+IXo7WLOfUYguIm3C3Sc9JaWKtWu7cOEjr/LpuPvolvMVTyY/xu+f/8o3eRPIyIjQwFEREREROSzexRnxUaWUz3+f5SPnEb2xGAxYV3I0T2XdzKLdZ2JiaXRgqIJzEd84UAsV8VMNW514QtrAVj6uOxz2yhBaqzK8yUp0d1W3H8esQe62N5Wut4xViX7QLL5egIgcGdy/hCQkOMnMDKGsJoxh/3mKJ9dPxGkaHL3zQ7q9dQ8JQXlkZgaTk2NhxowIcnL0z5SIiIiIHJj3z4+5uQH8a2YAua8voPqumzi38iWiA4vJD+zN/7o8wLnL3uTEm07kn7Nc7QTHjy/ztCF0DwwVEZGD0DBg9lSDt3Kw3Fg7F3cVfEDbtHNpsyGqh6PJSnQ/Dv79jJ4pEWlz48aVAZCaWsm6dZdw7fPH8O9hf2VozEo+HJ7Gt/FTWb78OFWli4iIiEizuQeGnntmIbErFrB85AJiNxQCsLG0N09n3cQHu0bhJABwtW1JSXENFN13YKiI+Ivi4mI++OADVq9eTUlJCXfddRc9e/ZkyZIl9O3bl8TERF8vUcB3g0Xd4fDuHZgbVmP0P671Anz3OTqdmO5Kbmi99jEtaJ+2N+0h+PczKvEUkTY3cKCDadOKGDmyiuxsK1/kn8aoz+awtrgv8UF7OG/tHXw//RPAVFW6iIiIiDTJ++fEgpwqbkqcQ+LL15Gw/BVigwrZa+vBT4Pu5v0hL/P+rtE8Ob2EWbMKAFdBhwaGivi33Nxc7rrrLj766CMMwyAnJwd7bTi7ZcsWPvroIx+vUDyaqkRv7ZDW3c4FcE6/F7OivPUHi0L9anT3uQb4ca1yU4NF/Tj49zd+/N0VkSNBamoFc+eGceeTYXy762myMmdyYbclPDbwSQZFraHsqAksXx6kqnQRERER2cfatVaefdrG2XzIwLVvkZK0F6phS1l3Zm68iYU7R1PzXt2vvcnJdk9wnpRkV/W5iJ+bM2cOoaGhPP7440RFRfGnP/3Jc9uxxx7L22+/7cPVST3ugNnhwHTWeFVnt3JP9KCg+tfLSlovwA+wgmEB09kgRHcF0oY/V3VrsOhhU1mniPiU98DRDVsi+POvf+dvaydRY1q4suf/GPr5Hfz9Ltd/TpmZwQd4NBERERHp6DzV59sdFCzI5KuRF5O87nmijL1sLe/GnSumcuaX83lnxwWc9QcHixblearPof6sHhHxbytXruTyyy+nU6dOGIZR77aYmBj27t3ro5XJPupVaVe3fTsXN3t1qwXEhmE03he9HbRzUYh++BSii4hPef8Sk5paARgkT76ARf2fYG91FIOj1/D5qDSGdfqRuLgapkyJYunSQLV2ERERETlCNGztt26Vk7x3FhH2xM1cWPFPEoLzKbYmsDj+Ds78Yj7HXDeSp/7pqi4fP76M5GS7Z2io2raItC92u53w8PBGb6uqqsJi0e+FfsO74ry6qu0GVwY2CNGrq1v32IG15+kdorfVGwaHwytEN51OqKn9/1CDRZtN/9qIiN/wrkr/Kv8ULlg+m1VF/QmtKeSNkydS/O6HzJ0bytixnZkzJ8zXyxURERGRNuAeGJq7y4nzi0UMfOtGHhv4JCFV+eysSODelfdy/P/e5cZXr8Zu2sjOttKvn+uj9bGxrmpzVZ+LtE/dunVjxYoVjd62Zs0aevbs2cYrkqbsU6Vtb6PqbKsVengNl7VXtV5PdGiiEt19PD8OpN3rtldDjddQVH8O/v2MQnQR8RsNq9K3V3Rj8+Uz2JxwNlZLDQ8NmMHTgx/guad3ce65FRo2KiIiItJB1as+r3FwVY93OeqVmzDnPEe0mcvuyjg+iZvEvIGvM3fbpdxzf7kGhop0QGeffTYfffQRmZmZlJaWAuBwOPj2229ZvHgxf/jDH3y8QqnHHdRWlrv6hkOrh7SGYWD56z+gSw/XBu8q+NYI8GvP0WysnYs/B9K1nxQwvd/gAP9es5/x47dIRORI5q5KPzopgN8sd/NqxhAeGPAUl3T/iIKvs/ih6kEyMpI0bFRERESkg8jJsTBnThhpaWWsXWtl5lMhjLB9QL+suUwbtBsqILcylmd/v443to2hylnXfzc728qYMSUaGCrSwZx77rls3ryZ1157jddffx2ABx54ANM0Ofvssxk5cqRvFyj1uUP0srK6ba09WBQwbDYICXVdqa5uo0r06rptrXm8luJuQ+PdMx78u3rez+iZEhG/5P7FZ8aMCDIyIoCrWVPcj+eOv5fObOTEJX9meOzfycwcSFKS3fMLlz6iKyIiItI+udu2nPOHMnYvXMrnZ8zhqJXbAcir6sRzv1/LnK2XUuV09XWdPr2Q4GCT9PQYUlMrFZyLdFC33HILZ555Jj///DNFRUVEREQwdOhQjjnmGF8vTRpyB8zlpXXb2ipYdleI26sx3ZXWAa0Qe7pDZ+8guh1Uohu2IEyo3zM+wLrPwF5pmkJ0EfFraWllDB1aTWZmMHFx/Tn/X7N577w76MJ6Zp+czg+hN7H8q0vJyIhQVbqIiIhIO+Ndfb4nz8ml3T+g1ysvMqB8J4RBeUA0P8Rcxc1zx3LnX6t5L6WErKwK0tNjSE62e9q2JCXZD3wwEWm3+vfvT//+/X29DDmQ2mpn0x2iGxaMgIA2OrZXr/LWbOfiDsodXn3F22qI6uGoV4neDirn/ZAff3dFRFwV6QkJVYwcWcWUKVHsquzC6e+9wt+Oe4Ire/6PYTte4P0fsgkJeIDMzGBGjlSILiIiItJeuNu2nB74Ef1+e4OnBm+HcthTFc2/ssfx+tbLqagJASA728mtt5bVu7+qz0VE/IinnUvtv8u2Nowd3W1jqr0GZ7ZGSNxOK9Hrnh/vNxkUCx8MPVsi0m6kplYwd24Y/5hZTm7OJO57fQCPDPwHF3ZbQr/wTfzW/UGWLo0jMzOEcePKGDjQceAHFREREZE24115Hh9nZ+fCZXxy+myOXrEVDFd4/sKma3h9y+WU14QyalQlF15Y4GnZAmhoqEgHd+WVVx7U/m+99VYrrUQOWsOe6NbW74fuZgQGutqV2OsGZxqtEqK7K9G9QnR7OwrRvXui+/N6/ZBCdBFpN9zDRlNSqpgxI4K5Wy9nXUk/nj/hbpIiN9Ltlwn8+ZXH+CL/NACmTSvy8YpFRERExDs4z80N4OmMUE4P/JiIbXO4snw7hEOFJZIfY67kpjeu4Y6/2nkyvor09FDGjy8jKcler2WLqs9FOrZLL720Xp/mpUuXUllZydChQ4mOjqagoICff/6ZoKAgzjzzTB+uVPbhDtEratu5tEY7lQMd27vSulUr0euK9kx35bs/V3a7nx97dV3o3xo94zswPVsi0m54/8Lkrkof90hvvi16lu4fPsbQmJW8fvIkpq2/jdPOu7DeL2waOCoiIiLiG94DQyOzlrLkjLfot2IzAAXVUby4KY1XN19BWU0YANnZZaSklAMQG+tUaC5yhLniiis8l//3v/8RHR3N1KlTCQ4O9myvqKjg0UcfJSgoyBdLlCYYgbXDK8tqQ/S2rHT2bufSij3KDavNdY7trp1L7dq829205ZscHYDF1wsQETkU3lXpMYnRXPndC2zueT4GJncf8xxHLfkb331RQ0ZGBGvX6j8GERERkbaUk2NhxowIcnIs7Mlz8seuH9PzPxPo8fGT9AvfTIUlgjX9r2N20hs8+/t1PPSEnVmzCgBITa1UyxYRAWDx4sVceOGF9QJ0gJCQEC688EI+/vhjH61MGlVb7WyWFte73jbHbqPBme22nYu7Er2VK/U7MFWii0i75F2RNGNGCNXOQM544WGu7jmERwZMo2feV1Qs2Eli2HQyMzuTlGRXVbqIiIhIG1m71spTGWGkBH9Cn1/m8uzxm6EMCqsjeXHTWF7dciWljnDP/snJdk9wnpRkV/W5iACwd+9eAgICGr0tICCAwsLCtl2Q7J87NPdJiN5YO5dWiD0baefiPp7RGsdrKe43GRwOVzU6KEQ/SKpEF5F2b9y4MsaOLWPu3D30HX8WV3z3IiUBnekfkc3/ThvHyE7LWL48SFXpIiIiIq3IU32+C7a9+w1LTr+Kk359jO7GZorsEUxffyspS9/nmd9v4NQzrSxalOepPoe6IgkVPIiIW/fu3fnggw9weAeWgMPh4IMPPqB79+4+Wpk0yh1kl9SG6EHBTe/b0tyV1t7tXFqjXUlt8GzWa+fSipXvLcVWN+TVrHC1TGuVNxk6MD1bItLuDRzo8AwRzcwM5pfCZEZ+PIfnT7iHkzv9yrm/38+Mj27B4Abmzw/hp58CVZEuIiIicpgazp9Zu8bC+je+I3D7v/hT2WaIgEpLGD9FX87N/x3P/91bw9/j7aSnw/jxZfWqz9W2RUQac9VVVzF9+nTS09M5+eSTiY6OprCwkO+//57CwkLuuusuXy9RvPlBJbrp3a4koBUHi9rbWU/0wLoQnfIy11d/Xq8fUoguIh2Ke+DoAzMCWLn7CdYsfJnxR73NHf1fIDlqLb9ETyEjowuJiQ5SUqoUpIuIiIgcIs/A0FHlxG//mr5vzeP5E7KhFIrs4by86U+8svlqih0RwL4DQwG1bRGR/TrhhBP461//yn//+18+/vhjTNMEoG/fvtx2220MGjTIxyuUetyhub26/vU2ObbXYFG7e3Bma7RzqQ2ea7zbufh/JbphCYAAq2vdFQrRD4VCdBHpULwHjs6YEcHcNXezomgAfx/4OOckfEmfjVv4OOwfpKcnMnlyiX5pExERETkI3tXnmE5GJ3xG91f/hbMkm65AsT2MVQmX8XP0ZTy9pCtTpxYRH19AenqMBoaKyCFJTk4mOTmZqqoqysrKCAsLIyiodcPZ3Nxc5s+fz6pVqygsLKRTp06cfvrpXHLJJVi9WmDk5+fz0ksvsXr1agIDA0lJSWHcuHH19jmiNAjNjbYM0d3tSqpbeXBmY4NFW7MHe0sKDIQKheiHys+/uyIiB8e7msldlT7ktuG8s+2fnLnhQfqGb+H9lGv5tOc9GH1OYcqUKMaNK2PgQMcBHllERETkyOQdnLsHhp4WspR+WXN4cejvUOIKz1/Z/Cde3nQ1RY5Iz32zs62MGVOigaEictiCgoJaPTx327lzJ6ZpcvPNN9OlSxe2bdvGCy+8QGVlJePGjQPA6XTy+OOPExkZySOPPEJJSQnPPvssANdff32brNPveLcMAWij7xe4AnsToKK8rkq8NXqyt9d2LuB6o6Gi3NPOxa8HofohPVsi0mG5q9K3brXx4osnEhs4m+eOv4dTY3/mol0PMPPLG3gz62YAT091EREREamvrm1LBZvf/ZEPU15n4C8bACixh/HK5qt4afOfKLJHATB9eiHBwaan+lzBuYi0N0OGDGHIkCGe6wkJCezcuZPFixd7QvTffvuN7du38/zzz9OpUycAxo0bx3PPPcdVV11FaGioL5buWw0rz33RzqXM6/+bwNYI0ffTzqU1Bpm2pNpqfbO09jlqy+9PB6AQXUQ6LPcvbDk5FpKT7aSnd+LbU55k9ZJXuDHxTSb1e5nkqLWEnD2ZnJzgeoOxRERERI5k3tXne/JhVPxSur32LwaUbYQoqDZC+Dn6Um6adx233wNvpVSTleVq2+I9MDQpyX7gg4mItAPl5eWEh4d7rm/YsIFevXp5AnSAwYMHY7fbyc7OZuDAgY0+jt1ux+5VxWwYBiEhIZ7LTXHftr99fM0IDHZVg7sFBe+z3lY7j4ZDTS0WDJutxY9j2AJd51hbfW4YRt1lW6Bff388z1FZ7XNU+/1pD6+t5mjt81CILiIdXkKCk5SUKiZPLqFPHyd//ucdHH9RbwavyuCs+K8p+XAzP+x+iIyMExg6tJqEhCpfL1lERETEp9autZKREc6w0GX0/GkOL5+4AYqh1BHKfzZfyb83jaXQHg24BobeemtZvfur+lxEOpLdu3fz0UcfearQAQoLC4mKiqq3X3h4OFarlcLCwiYfa+HChbzzzjue64mJiTz55JPExcU1ay1dunQ5uMW3ocqcruR5XY+M7Uxk166N7tvS51FdVkQOQFUlAEZwCN26dWvRYwCUxsZSAARZLIDrPLbVhujx3bpj7Rzf4sdsKbtDw7AD1opyHEB4p1iivb4//vzaOhitdR4K0UXkiOD+RW7KFNcPOWOeuIzjIgfy4gl30ZOdnLJ0Eud3eZDMzFNJSrKrKl1ERESOKN6V5/HxNWS/+wsfpLzOoJ/XggFljhD+s/kq/r1pLAX2aEaNquTCC+sGhgIaGioifm/evHn1AuzGPP744xx99NGe63v37uXvf/87p556KmeffXa9fRureDVNc7+VsGPGjOGCCy7Y5zHy8vJwOJqe1WUYBl26dGH37t2Yptnkfr5kltZ/Q7WkqpqyXbvqbWut8zCLiutftwWxq8GxW4KzrByAqtq+4rt27oQa1/97uXv3Ytj99/9AR+1rzVG4F4AyRw0Vu3a1i9dWcxzoPKxWa7PfrGqMQnQROaKMG+f6jy41tZJ167pywROzef/Cu+ld8RPPn3APvwVeyfKvriMjI0JV6SIiItKheQfnrr7n4QwLW07Ytte4tiyrtm1LML9EX8LN867nz/cYPBLvJD0dxo8vIynJXq9li6rPRcTfjR49mpSUlP3u4x2y7d27l4cffpj+/ftz880319svOjqajRs31ttWWlpKTU3NPhXq3mw2G7Ymemc3J8A0TdNvg04zpH4feDMwqMm1tvR5mA2f08DA1nmeaodxmrUteUxHXWseM8AKfvq9ATw90d0tbxp+f/z5tXUwWus8FKKLyBFl4ECHZ4hoZmYwBfYwRi54lrv7P8utR89mcM5bFM3eTLTtMTIzg1WVLiIiIh2W98DQ8C3f8/5pbzHkpzUAlDuCeW3LFbyw6Rr2VscArrYtKSmuCrzYWKdCcxFpdyIjI4mMjGzWvu4APTExkQkTJmCpbd/h1r9/fxYsWEBBQQExMa5/J1esWIHNZqNPnz4tvvZ2ISyi/vU2HSza4FhBrTBUFCCgNkp1h+de/e09Q0f9VVs9Rx2U5cC7iIh0TKmpFQA8/c8SAq4Yz8Rf/o7dCOaMuO/4IGUcJ3ZZx/LlQWRkRLB2rZ//ZygiIiLSDDk5FmbMiCAnx8KefBgZt5yur0+m1/sPMiR6DXYjmKzEK3i135s8vv527n3MYNasAsD1ST61bBGRI8HevXt56KGHiI2NZdy4cRQXF1NYWFiv1/ngwYPp0aMHzzzzDJs2bWLlypXMnj2bs88+m9DQ0KYfvCNrEKIbbRqiB9a/3loBsTsod7fecXiH6P5dq2zYGj5Hbfj96QD8+7srItKKkpIcTJ5cQkpKFTNmRPC/Xeew4cs+vHTCHfQO20HcqtuZ8uZUYDSZmcGMHKnWLiIiItK+uQeGnhz+Dd2+n8PrJ62BIqioCXJVnmdfw57qTp79k5PtnuA8Kcmu6nMROSKsWLGC3bt3s3v3bm699dZ6t82bNw8Ai8XCvffey0svvcTUqVMJDAxk+PDhXHPNNb5Ysl8wAgIgJAwqanujt2WIbmtwrNY6trttjMNOxY9f43z7Ndd1q3W/vfD9QoMQ3QgK8dFC2ieF6CJyxPL+JTA1tYK5c8P4899j+WLnM/RcMp0z479m1pD7SY5ciyXxWpYuDSQzM4Rx48oYOLDpgS8iIiIi/sTT+3xsKVnvrWLBqa9z4o8rwOIKz1/fcjkvZF9DfnUso0ZVcscdeWRlWUlPd7UnUHAuIkeakSNHMnLkyAPu17lzZ+65557WX1B7EhZeF6K3YaWzERDgqhJ3V4a3QTuX/Adv99reDj69vk+1virRD4bauYiIUL8qfe3WTlz341PM2ngdADf3mUvS4r+Sfl0Ac+eG8frrYT5erYiIiEjTvFu2AKxdE8APr6/GmHE315feyYkxK7AbgfwYfRnDP38Py+XX8eAM177jx5eRnGwnJaVKbVtEROTgebd0actK9AbHNgJbKUS3NWjn4tneDuqU96nWV0/0g6EQXUSEugqrhAQnqakVOAmgV/qf+Grgg5Q6Qknp/CNfX/AnkiPXcuqplfV+MRURERHxJ+6Bobk5Fsw1v9LzrSnMPfnPxBauobImiJc2Xc2wJe9zyRv3kFfdmexsK/36ucKA2FjXIHXvn41ERESaLdyHIbr3sVurytpa186l0e3+rK36xndQSoBERBrwrko3B5/KRV+/Smlod0Ir85h/6g3YfvqMjIwIli8PUpAuIiIifqFe9blpclrsDyTMmYLzqQc4qmYllTWB/BR9Ka/2ncsja+/g1rttGhgqIiItzgiLrLvS5pXo4XWXW72dS4NK9PYQomuw6GFpB581EBFpW959P2fMCCGrtDOnvDuXmYOn8oeEZZyX8yQPD9jEX26fzPU32QgPN0lLK1OlloiIiLQpT6/ztLLagaERnBT5I/3Wz+a/p6yAAqisCeSNrZfwfPa15FTFee6bnW1lzJgSDQwVEZGWFeI1rNKH7VxarVWJralK9HYQsQY3GCSqwaIHpR18h0VEfGfcONdAlFNPreK3DQ+x8qP/8pd+/+a6o+Yx6th1fN1lKnc+ksjQodUkJFT5eLUiIiJyJHG3bTnnnErWvreOt055nVO//xlwhedvbhvDc79fS05VPADTpxcSHGySnh5DamqlgnMREWl53n2327hdiBEeiek5disF+F6DRetpD5XokdH1r6sS/aCoD4GIyH4MHOhg2rQisrMDmfnPKJ7KuoUbfpxBsT2MHpUrOH3ZRIZErSIzU73EREREpPV5t23Zs8fglE4/ETfnHm4u/T9Ojf0Zh2Hjl6iLOX3puzguvZnX3jM8bVu8B4YmJdkPcCQREZFD4N13u62D5dA2aOfirkQ3zfrb20GIbkR1qr+hrT8p0M6pEl1EpBnS0spITHSQnh5D7wtP4MI3X2P+HybTla28PewmvotMZ+nSc8jMDGHcuDIGDnQc+EFFREREDpK7bcvQqF/o/M0c3h72M+yFqhob/91+Mc/+Pp7dlQkAZGeXceutZfXur+pzERFpVba6MNkwjLY9dlsMNW0qLG8HITpR0XWXbYEYlgCfLaU9UiW6iEgzJCQ4PZVbe/cGkF12FKd/+Dof7T6ToAA7Z2zJYMvjL/L2mzZefz3M18sVERGRDqLewFBg9ftZvHnybZz+3WSSLD9T7bTy+pbLOOOLhUxdfTfJp0fVGxgKaGioiIi0HZsPq5u9e6K39mDRhmztIUT3qkRv4/c3OgKF6CIizeSu3Lr00nIAHn/KTvFV9zJt/W2YGKT1WsBbp9zCxSN37PMLr4iIiEhzef8c4e57vvaDLIoeeZBbS9JJ6fwDNVj5NepCzlj6LlWX3MZfp7tCi/Hjy/Zp2eL+GUZD0EVEpLUZif19d2yvEN1orUr0gABorMK+qXDdn3gPFq2u9t062ql28B0WEfEvSUkOJk8uISWlirVrrdz1+w2cPrYHQ399nKExK6n4cCI/7nyAjIzTNXBUREREDpr3wNCQXWuYc9I8Tv/2OwDszgDmbb+QZzZez47KroCrbUtKiutN/thYp1q2iIiIzxj9j8Ny6z2Q0K3tDx7e+pXohmG4WrfYG4TQ7aCdS5u31+lgVCIpInKQvKu5MjNd7+Re+ci5nP3JHNYW9yWkuoBh39zJNb3eJvPDIFWli4iIyAE1HBh6QvQKOr9xP4lv38EZcd9RQwCbe6byap853LvqPv7v0ZB6bVvUskVERPyFMfQ0jB5Htf2BwyLrLrfm0EzrvjXJRnto5yKHRZXoIiKHYdw417Cu1NRK1q2L4OK//4f3Ln2AY0s/57GBT7I+4Fe++fJ21wAwVaWLiIhIE9wDQ0+IXkHM13N597TvId9Vef7O9j/yzO/Xsa2iu2f/5GS7JzhPSrKr+lxERCQsvO5yq4bojQTmjQTr0rGoLFJE5DAMHOhg2rQiRo6sIjvbSkVNCOfMm8bf1k6ixrRwzJ6P6TXvLroF7yYzM1hV6SIiIuLh/XPBivc389qJt3PGt5NItnyPwxnAm9su4swv5nP3qvs5dngsixblearPQb3ORURE6vFu5+JsxU9mNRqit5NKdFugr1fQbinFERFpIampFQDMmlVIQtqFpH3/DBWWSAZHr+HDlDRS4n5g+fIg13Cwte3kP1gRERFpMQ3fTF+71sqnL2/BMfMRJpbcypnxX+PEwsrI8xj5xXxKL76du6aFAa6BocnJds/QULVtERERqc+w2qBHIkR1gm69W+9AjVWdt5dK9ITuB95HGqUQXUSkhXgPHM3OtrJ8z8mc9clcVhYdQ2xQIaPX3c1vGR8CJpmZrTPkRERERPyXe2Bobm4A5uYs4uY9zP9SxtMlz1V5Pm/7HxmxdAHn//dRtlb0IDvbSr9+DsA1MBRUfS4iIrI/lqkZWB5/sXV7lLfjSnTLLXfB0cdiuf1BXy+l3VGILiLSQrx/qXVXpd8zPZgfRj7FO9vPx2qp4YGkp/nnkPvpd1QpS5cGMmVKFKtWtZN3rEVEROSgNaw+T45cS6c3H8b52B0ca/+GGtPCqohzeS3xNe5c8SDj7ojQwFAREZFDZFgCMFq7ZUmjlejtI0Q3uvQg4J5pGMlDfb2UdkfJjYhIK/CuSp8xI4K5Kx5iRVESU5Oe4uJuH7Pmi2xuzpjO1orOAEybVuTbBYuIiEiLycmxMGdOGGlpZZ6BoUM6raXf+tl8OPwbyIMa08LCHefxz403sLm8l+e+2dlWxowp0cBQERERfxUUsu82w2j7dUibUiW6iEgr2Lcq3WDoneeybOh08qo6MSAyi8/OuYbTO3/LqadWatioiIhIB+LdtuWX97fx0tDJjPx6At33uCrP529P5awv32byiofZXN6L6dML61Wfq2WLiIiIH4uM2ndbjT4x1tEpsRERaWXeVem2AQM4f/ls9kYdS6C9hNknpRPz3dtkZISzfHmQgnQREZF2qGHLlj17DAZErCfmrb9xe8lNnJPwJU4srIn4A2d/OY+9F93B8/NDPcG598DQpCT7/7N33+FR1dkfx993MgnphVSqECASSJCiqAQFcVEWseC6/iyAqKAoRpS2NmzoIiAIIi5YWQFdmihqBAUEQewNFZBA6JBGKgmpc39/DBkSmoGUySSf1/PwTLt37vk610xy5sw5zlyKiIiI/AXDP/DkO0198F3fqZ2LiEgNK/817GnTvEgu8KH7ord4tsNUbmu5nMsOv8GcLkmMeegpbr/bHV9fk0GD8lR9JiIi4iLKKs9bty4hJnA73gsXsfKyLyEFbKbBhwev5uUdw9iZ1wqApKQ8RozIq/AcatsiIiLiIvxUid4QKYkuIlKLhgyx/8F86aUFJCY+yCPvR/Nc7BT6N1lL9/N2siH0GUY9H0O3bkWEhxc6OVoRERE5nfJ9zwHa+yXi/vZrtIn4Aiz25PmKQ1fxcuIwduS1pm/fAh66LpP4+CD69y8A0NBQERERV3SqSnSb3svrO/UNEBGpRTExJUyZkk1SkgczZ/rx7r4buWnTayQXhBJStIcrvxvJlWEbSEjwPOmr4SIiIuJc5d+bywaGbl55EL/3/s1nl91K/4gvMDHY5tuHvhsWUXj7OEa9EAjA0KF5J7VsUe9zERER13PKdi6lei+v75SZERFxgkGD8hx9ULve1JprNs5nv2cs/u55vH3hw9zk+RZfbXRn+nQ/tm51d3K0IiIiAhUHhv740SFe7fIIfTbeQ4u0DfbK84N96fvl/7hq8RQSj0QSG1tMu3YlAAQH25Q0FxERqQ9Uid4gqZ2LiIgThIfbHNVou3e7kVYUQq/lr/FE9Evc2Wox3Q79l4xfkvCzTiQhwZPevdXaRURExBnKt205fNggyncnAYtfZVTOlxhNTAD+9O3FyIT7+L+HQ3k5rojERHvbFlDLFhERVzV58mR2795NTk4OPj4+xMbGcvvtt9O4cWPHNunp6bzxxhv88ccfeHh4EBcXx5AhQ7BalW6r106VRG8dVethSO3S/9UiIk5SVo22bp0H77/vzfSXj5Caei+j3+rAlM7P0zd8Ax/FDeHHJk+xbl0zEhK8GDIkj5iYEmeHLiIi0mCUtW3pFLID3y//x2eXrcWSbE+ef3LoSmbsGM6fuW2B4wNDyyfONTBURMQ1dezYkYEDBxIUFERGRgbz589n+vTpPPfccwDYbDYmTZqEv78/zz77LLm5ucyePRuAu+66y5mhS00rl0Q3Lr8aWrXDiLvSefFIrVA7FxERJ4uOLmH06Fzi4gpJSrKy9MAArt/wFvuPRhDps5e/b45nwZhfWbjQh3fe8XF2uCIiIvXaiTNJfvgomVc6P0rvDffQ3bIGi2GSkHwFV214j/t+nkzLS5o7WrSVDQxV2xYREdc3YMAAoqKiCA0N5fzzz+eGG24gMTGRkhJ7UdOvv/7K/v37iY+Pp3Xr1nTq1IkhQ4awZs0a8vPznRy91KhGXsevBzTGctlVGBY358UjtUKV6CIiTla+Qq1//6MsXOjDPc9H8EPOK+z58AXiQn5gbtd/8cqOO7mg3z8rfK1cf5yLiIhU3aFD8OKLvgwalOfoe94pZCfdUt7hoZwNGE3tlefbfS4jfuV93PRQOCPDbMTH2weGRkcXVxgYKiIi9cuRI0fYsGEDUVFRjlYt27dvp2XLlhXau1xwwQUUFxeTlJRETEzMKZ+ruLiY4uLj7xeGYeDl5eW4fjplj51pG1dQH9ZhGAZlf4kbBfkuvRaoH68J1Pw6XDKJXlxczGOPPcaePXuYMmUKrVq1cnZIIiLVonxV+tatvgz6/hU+v/9F2u5aygNt3+bQqt/4LvVRpk+PoFu3IsLD1StdRESkqg4dgunT/bjqqgI8Du9hVueX6L3hcyyGPXmekHwFMxOHszXX3u80KSmPuDh7lWH5gaEiIlK/LFiwgFWrVlFYWEi7du145JFHHI9lZWUREBBQYXtfX1+sVitZWVmnfc7ly5ezdOlSx+3WrVszefJkQkNDKxVTRETE2S2ijnL1dew7dhnU7VK8mzRxaizVxdVfkzI1tQ6XTKIvWLCAxo0bs2fPHmeHIiJSrcr/ET5tmhelppU+sx/huiadmdppIk0yfqD4oweJ9ptKQkIzoqOLVZUuIiJyDsq+2TV4cD5padDONwn/Ja/S7NB62h6rPD8Y3pPVje7giYQuTJ2ahaenfWBo//4FGhgqIuKCFi9eXCGBfSqTJk2iTZs2AFx33XX06dOH9PR0lixZwiuvvMIjjzxyxopX0zTPWAk7cOBABgwY4Lhdtm1aWpqjVcypGIZBREQEycnJmKZ5xjXUZfVlHdYX3iAgK53sth3JPnTI2eFUSX15Tf5qHVartdIfVp2KyyXRf/75ZzZv3syYMWP4+eefnR2OiEiNGTIkD7D3V9227VKunzGPxX3G0NL7AB/0uJOvA8fy1Ve9mT7dT1XpIiIiZ+n4wNCd+H81k88v+xzLoVNXngPExhY7EufR0cWqPhcRcUH9+vUjLi7ujNuUT7L5+/vj7+9P06ZNadasGffddx+JiYlERUURGBjIjh07Kux75MgRSktLT6pQL8/d3R13d/dTPlaZBKZpmi6d6Czj6uswQsLxju1M9qFDLr2O8lz9NSlTU+twqSR6VlYWc+fOZdy4cXh4eFRqn3PtNeWK6ksPI3EOnT91T2xsKVOn5gCQkODJttx2XJYwn1mdn6B36Nf02fU8r63ZjZsRz7JlXvz4oweDB+c7pSJd549Uhc4fqQqdP3I2UlIszJ/vzeDB+fzwUQqzOk8/3rbFqJg879u3gJfGpJGYaCU+PgiAiAiTsWOPHHs2nXOin0FSNTp/al9ZUvxclCXlynJMUVFRvP/++2RmZhIUZH+f2Lx5M+7u7kRGRlZPwCJSZ7hMEt00TV599VX69u1LmzZtSE1NrdR+Ve015YrqSw8jcQ6dP3XT4MGwcCHMfjuA5IMzmPXGHOLbvs09kQvp6P8nvzaZxAvTg+ja1Y/wcHBWSzadP1IVOn+kKnT+yKkcOgRz58K999rfGzdvhhVzd3Hb0Td4KOczx8DQXQFXcN/Hw7jzyfN5vAkMGgRjxnhy9dWedOoE6enQqVOo095fpe7TzyCpCp0/dc+OHTvYsWMH7du3x8fHh5SUFBYvXkx4eDhRUfZvKV1wwQU0b96cV155hUGDBnHkyBHmz5/PlVdeibe3t5NXICLVzelJ9Mr2o/rzzz85evQoAwcOPKvnP9deU66ovvQwEufQ+VO3hYdbGD3am44d8/n0U18Wbh/Jb9nRTL/gaeJCfqDVlkF84v8igwZFM3p0brkqudqh80eqQuePVIXOHzmTzZutPPNMKJdemoZ5cBdF/1nG6svXYtljP1c+Tb6CmYnD2JJ7PgC//JJHbGw+EAqkceiQ/e+Fe++1P5+LtzyVGqCfQVIV9en8qWqv4brGw8ODb7/9lsWLF1NYWEhgYCCdO3fmoYcecrRisVgsPProo7zxxhtMmDABDw8PevbsyeDBg50cvYjUBKcn0Svbj2rZsmVs376d2267rcJjjzzyCD179uSBBx445b5V7TXliupLDyNxDp0/dVNYWKmj72r//kdZuNCHnvFdWLJ/Nr22PkWkz16WXXo365o+TFFkH8aN82fIkDxiYmr3w0KdP1IVOn+kKnT+SJmygaGDBtlni7T12YX/klcpObSOztjbtiT6XMbXwUN4IqELEyZk89j59urzEweG6pySytLPIKkKnT91T8uWLXnqqaf+cruQkBAeeeSRWohIRJzN6Un0yvajuuuuu7jlllsctzMzM3n++ed56KGHaNeuXU2GKCJSp0RHlzB6dC5797rz2mux+FnfYcYFE+gbvoF+KZOZ92oSi7eOBmDKlGwnRysiIlLzyifOywaGxobupO2fC1l9+TrHwNATK88BkpKs3HcfGhgqIiIiIqfl9CR6ZYWEhFS47enpCdh7hwUHBzsjJBERpyj74z4lxUJsbDHx8UFsjnuazQmLGRM1l6GtltDRfzulVzxCSoqfI6ngjIGjIiIitSE11Y3p0/246qoCvv8olZkXzOCKL1c5BoauTO7NzB3D+COnPQBTp2bh6WkSHx9E//4FNGniw9ixR1QJKiIiIiKn5DJJdBERqSg83EZcXCGjR+cSGVnCAy8PJ+7W5nT9ZRIXNf6Vox8/wPcHn2T69Di6dSsiPLzQ2SGLiIhUm/LV54cPG7Tx2Y3fkld5OOcLjGb2ZHiiT08eXDWCG0c1YVpcEYmJmcTHBxEbW+xo29KhQ/2akyQiIq7Jaq1ciq6y29V1WkfdU1/Wcrp1VHV9LvtfJywsjMWLFzs7DBERpyqrSh8/PgCAmyf+ndY+HXi96zii/JK4ZNMYbmsxnoSEq4mOLlZVuoiI1BvH27Yk4bP+f6y5fLWjbcuJleedk/IYMSKvwv5l76GGYdR67CIiIicKCgqq1Hb1ZYCr1lH31Je11NQ6LDXyrCIiUquGDMnj9tvzWLjwMINGB3L9prfZ7ns5HpYSXoj9N3e4TebrLw2mT/dj69ZTD1sWERGpy1JSLEyb5kdKiv1PGHvblie44sthXGL5HIthsjK5N3/fuIB7fnqRphe3YtasTMA+MBSoMDRURETElRw9epR//etfHD161NmhVInWUffUl7XU9DqURBcRqQdiYkqYMiWb3r0LSUqyklfqw98WT+OFbQ9Qalpon55A88XjifBMISHB09nhioiIVEr5xHlZ3/NfV6Vw+MWXeChnKAObrcRimOzwiePvGxew75oJjHg+HIChQ/Mcbc+io4uB49Xn+kaWiIi4GtM02bVrl8vP79A66p76spaaXoeS6CIi9Uz//vZPXWfNyiL49oEM+f5ljlr86BL4B5/EDaZH6E+sW+fB+PEB/P67y3b1EhGRBqAscZ6a6oZHxj5mXDCB3l8OJ/DPL7BgY1VyL/6+cQF9lszkj5z2JCVZadfO3uM8ONimpLmIiIiIVAsl0UVE6pno6BJGj84lLs5elb4h/RL6rpnPHzlRhDbKoN+2sax+bDULF3rzzjs+zg5XRESkgvLV54cPG0T67MZv6YtELhjBjc0+xc2wcSisB/NbvMbwn6YxdEJEhbYtatkiIiIiItVNJYgiIvVMWdUd2KvSFy70YdwUH7bmTWf7e68wsNlKnun4Ip0CthBx1QhSUiwaOCoiInXG8YGhu/A+NjDU7aD9/WlVci9m7hjO78cGhgLExhY7EufR0cUV3gdFRETqC3d3d2666Sbc3V17xpXWUffUl7XU9DpUiS4iUo+Vr0oPb2Fl1K8T+a39CGyGhX80T6DDJ6P56fNMDRwVERGnKl99/t1HacfatgzjUstnuBn2ti39Ny5g+E/TaHJxK1auTHNUn4N6nYuISP3n7u7OzTffXC8SnVpH3VJf1lLT61ASXUSkHiufVEhI8AIMrpk+jFu/fpX0wiCCjuzgws8foGfwtyxb5uVIYIiIiNSk8klzsFeffzD3MEdffYmHc+5wtG3Z4dOD/hsXsPeaJ7m33MDQ2Nhix9BQtW0RERERkZqmdi4iIg3EkCF5gL1f7LZt7bhm6nw+/PsYIviT+d3jWetxD3dPv5vWrUvsleuq5hMRkRpSNjD0qqsKCDP34rtkOWsuX+No2/JZyuXMSLzH0bblgqQ84uLyAfvAUEBtW0RERESk1qjcUESkgYiJKWHKlGx697YPHD1UEMFlH77Fon3X4mbY6Jszh9mdH2P8Q57MmeOrqnQREalWJ1aflw0MLX3yAboUfe6oPJ/fYg7DfpzOwFFNNDBUREREROoEVaKLiDRAZQNHJzybz/7Uh3nsg45MjJnKtU0/55JWO9gY+jSjnu9It25FhIcXOjtcERFxUeWHV5cNDI0J203bPxey5vK1FSrPZyYO57ecaMe+SUlWBg7M1cBQERFp8FatWsWKFSvIysqiefPmDB06lOjo6L/e0UkWL17M0qVLK9wXEBDA66+/DoBpmixZsoQ1a9Zw5MgR2rVrx913302LFi2cEW4FW7ZsYcWKFezatYvMzEzGjh1L9+7dHY9XJvbi4mLmz5/PV199RVFRETExMQwbNozg4OA6s47Zs2ezfv36Cvu0a9eO559/vk6tY/ny5Xz33XccOHAADw8PoqKiGDRoEE2bNnVsU1uviUoMRUQaoLKBo3v3ujPzZX8W7L2Jm7+eS2pBMKFFu+jz3QP0Dv2KhARPZ4cqIiIurKxtS2qqG999lM5LnZ7kivV30yplNW6Gjc9TLuOajfMZ9uN0fsuJZurUrArV5xoYKiIiDd2mTZuYN28eN954I5MnTyY6Opp///vfpKenOzu0M2rRogWvvfaa49+0adMcj3344Yd88skn3HXXXUyaNInAwECee+45jh496sSI7QoLC2nVqhV33XXXKR+vTOzz5s3ju+++Y9SoUTz77LMUFBTwwgsvYLPV3u8zf7UOgM6dO1d4jR599NEKj9eFdWzZsoWrr76a559/nieeeAKbzcZzzz1HQUGBY5vaek2URBcRaYDKkhIjRhxxJCsu+EcbrvlqAQc9OxLgnsu8Cx/iH17zWPeFlfHjA/j9d315SURE/lr5ti2HDxu09tmD39JpPJwzhH80T8DNsLHTpwfXbJzP7v5PM3VxiOO9qPzA0OjoYievRERExPk+/vhj+vTpw5VXXumoQg8JCeGzzz5zdmhnZLFYCAwMdPzz9/cH7FXDCQkJDBw4kIsvvpiWLVsycuRICgsL2bhxo5Ojhi5dunDLLbdw8cUXn/RYZWLPz89n7dq1DBkyhE6dOtG6dWvi4+PZu3cvmzdvrhPrKGO1Wiu8Rr6+vo7H6so6Hn/8cXr37k2LFi1o1aoV999/P+np6SQlJQG1+5ooiS4i0oCFh9scyYqMDDdSCkO5/IPXmb/nH1gMkwsPvk3e9Cl8uMjknXd8nB2uiIi4gLK2Lb98lobb/JdYe/k/aXFwNRaOV55fseRlfsuJJinJSmxsMe3alTj2V/W5iIiIXUlJCUlJSVxwwQUV7u/UqRN//vmnk6KqnOTkZO69915GjhzJjBkzSElJASA1NZWsrKwKa3J3d6dDhw51fk2ViT0pKYnS0lI6derk2KZx48a0bNmS7du313rMZ7JlyxaGDRvGqFGjmDNnDtnZ2Y7H6uo68vPtg+bLEv61+ZooiS4i0sCVJSv+8Q/7m9G0mXl4DL2PcZufoNRwp1/EOj7sMZR/xG0/aSiciIjIie8N5du29LCsqtC25e4fXyLi4tYVWrYAGhoqIiJyCjk5OdhsNgICAircHxAQQFZWlnOCqoR27doxcuRIHn/8ce69916ysrJ44oknyM3NdcR9qjWVT+LWRZWJPSsrC6vVWqGqu2ybuvSadenShQcffJAnn3ySwYMHs3PnTp599lmKi+3fBKyL6zBNk//+97+0b9+eli1bArX7mui7+SIiAhzvkx4XV8jWrVYW7b+BAfeGc9FPz9CO3RR/OoqfDo5n+vQBGjgqItLAlR8YWtb3PCZsNxemLuDhnC+wNLdXke/06cGDq+7jhlFNuSfMRnw8DB2aR3R0cYWWLRoaKiIicnqGYVTqvrqiS5cujustW7YkKiqK+Ph41q9fT7t27YCT4zdNs1ZjrIpzib2ura9Hjx6O6y1btqRNmzbcf//9/PTTT2dsAePMdbz55pvs3buXZ5999qTHauM1USmhiIgAFb8+n5DgBcDgCZfS85OFfHO4K+6l+Vz809OMi5rNp5+4qypdRKQBKz8w1CPrANM7PcUV6+8mcNsaLNhYnXIZA756p0LblrKWLcHBNrVsERERqQR/f38sFstJ1bLZ2dknVd7WZZ6enrRs2ZJDhw4RGBgIcNKacnJy6vyaKhN7YGAgJSUlHDly5KRtyvavi4KCgggNDeXQoUNA3VvHW2+9xY8//shTTz1FcHCw4/7afE2U+RARkZMMGZLH7bfnsXDhYe77l5XbvnuVHwNvAiC+7dvcbxvPd18UMn26H1u3ujs5WhERqQ0nDgxt5b0X32XTiXznHm5q/gluho3k0EtY0GIOd/34EoOfaFqhbYtatoiIiJwdq9VKZGTkScMPN2/ezPnnn++kqM5ecXExBw4cICgoiLCwMAIDAyusqaSkhC1bttT5NVUm9sjISNzc3Cpsk5mZyd69e4mKiqr1mCsrNzeXw4cPExQUBNSddZimyZtvvsm3337Lk08+SVhYWIXHa/M1UTsXERE5SUxMCVOm2PuHJSR4UmJaGfjuI1zXpDNTO02kec4P2D6Kp6P/FBISWtChQwlz58INN1iUHBERqafKBobGhO3Ga90ivuj1GW4H7JXkq1MuY8aO4WzO7uDYPja22JE4j44uVssWERGRczBgwABmzZpFZGQkUVFRrF69mvT0dPr27evs0E7rnXfe4cILLyQkJITs7GyWLVvG0aNH6dWrF4Zh0L9/f5YvX06TJk2IiIhg+fLlNGrUiJ49ezo7dAoKCkhOTnbcTk1NZffu3fj6+hISEvKXsXt7e9OnTx/mz5+Pn58fvr6+zJ8/n5YtW1YYbOnMdfj6+rJ48WIuueQSAgMDSUtL47333sPPz4/u3bvXqXW8+eabbNy4kfHjx+Pl5eWoOPf29sbDw6NS51N1rcUw61pTnlqSlpbmaJZfXxiGQZMmTTh06FCd67UkdZ/OHzmddes8uP32EGbNyiQ11cKSGaks7jOGwOKDFJQ24ps2D5Ed/Tfi44NYuPAwvXurV7qcHf38karQ+VOzyvc+nzclm/O2vMfApp9itdg/MC2fPO/bt4AxY3JJTLQSHx/EypVpxMbW/d+3dQ5JVej8kaqoT+ePu7s7oaGhzg6j3lq1ahUrVqwgMzOTFi1acMcdd9ChQ4e/3tFJZsyYwdatW8nJycHf35927dpxyy230Lx5c8BeXbxkyRJWr15NXl4ebdu25e6773YMi3SmP/74g2eeeeak+3v16sXIkSMrFXtRURELFixg48aNFBUVERMTw7BhwwgJCakT6xg+fDhTp05l165d5OXlERQURMeOHfm///u/CjHWhXXcfPPNp7z//vvvp3fv3kDlzqfqWIuS6PVIfXoDltqn80dOp3wCZdo0PxYu9CHAmsOMzhO4MuwrAObt/icTt47m5tuKHBXsIpWlnz9SFTp/qlf5n/nh4TbWrfPgseFHWXj7qzQ/YO93DrDT+xJGfX4f1z/YnLAwW4UPUk98jrpO55BUhc4fqYr6dP4oiS4i9Z16oouIyBmVH/7Wv/9RAJ57qZSkfk/zUuJwAIa2WsKii++lVVAq48cHsG6dhwaOioi4oPIDQ83Ug3gvmcEXl99EywOfY8HGmtSeDPjqv1yx9BU2Z3c8aWAooKGhIiIiIlLvKMMhIiKVFh1dwujRucTFFZK0y4OXEu/lzh9eIrvYlwsbb2bglhFsT0jk9ttDWLDAx9nhiohIJZQfGApwnvc+fJdNp/SJ++lWtBKrpZSd3pewoMV/uPOHGVz/YHMNDBURERGRBkWDRUVEpNLKD4Xr3/8oCxf6cMOEGDZmvEKb1RNp77eT/118L1tjRuD+t/5Mm+bnMl/nFxFpSMq3XDk+MHQPbba/yxeXr8F6wJ4QX5Pak5cSh7M5u6Nj36QkKwMH5mpgqIiIiIg0GKpEFxGRc1JWlR4VVUxJ42bcsOlttvlegbullE5bZuO79CVeneHO1q3uzg5VREROUL5ty7cfHebFTs/Qe93dtE7+DKullDWpcVz71Tzu/GEGm7M7MnVqVoXqc7VsEREREZGGREl0ERE5J2UJlFWrvIiPDyK/1JurFk/h2a0PUWJzo8XB1bx/6V18/VHmSa0CRESk9pX/WXz4sHGsbctLjM4ZzM3NP8JqKSXJ+2Ku/WoeSX9/lsmLwh2J89jYYuLiCh3V5yIiIiIiDYnauYiISJUMGpRHt25FrF8fjLf3EWbMGET7v7VkQPKzxARsp23ecH764FGmT7+Kbt2KCA8vdHbIIiINUvm2LZ7rFvPF5avKtW2JY0bicH7NjgEgJimPESPyKuyvti0iIiIi0lCpJFBERKokPNzGFVcUMXcupKXZ31bGvn45V3y+gJ+zOuJZmssl3z/OyDZv8eknHk6OVkSk4TjxW0DffJThaNvS05JwQtuWmYR1b1uhZQugoaEiIiIiIiiJLiIi1eiaa+xJl1mzMhk2zot/fvM6v/oPwGKY/Ov8V7mHJ9jweTHjxwfw++/6MpSISHUrnzgv63v+82eHSX9pFmNyBp2ybcuw55oBMHRo3kktW9T7XERERERESXQREalGZcNG4+IKSUqyUmTz4Nr/Pc34zU9QWOpOq6yvCH/rYb77MIV33vFxdrgiIvVO+YGh7lkHmRr7DFesu4ugLZ9jwcba1B5c99U8ei+dza/ZMSQlWWnXrgSA4GCbkuYiIiIiIqegJLqIiFSb8smX/v2PAvaq9G6jenPTN6+T3yiUNr57+bDHUAbHfK6BoyIi1eDkgaH78Vk2gzbzh/N/LeyV5ymhF7GwxWyG/vAytz/RvELbFrVsERERERE5M32XXkREakT5qvStW638mh3D+rjZdP3p34Rn/UKHDc+RuP9mZr46WgNHRUSqoGxgaMewvXitW1RhYOja1B7MSLyHX44NDAWIjS12JM6jo4s1MFRERERE5C+o9E9ERGpE+ar0hAQvAO4dG8kl781hTtJgANrtWsz8ix5k3ccFqkoXETkL5X9mfv1RJlNin+WKdXc5BoaWtW0Z+sPLhHZvy8qVaY7qc1CvcxERERGRs6FKdBERqXFDhuQB9rYB27ZZmThxFM16tObqlCn0DPmOC44O56eEJ5k+/RJVpYuInEJKioUFC3wYNCiP8HAbW7daWfqfbAYemcPYnM+wtLAnw3d5d+eh1fcxIL4ld99hIz7ePjC0fPW52raIiIiIiJwdJdFFRKTGxcSUMGVKNgAJCZ4AjHzrOqJ8O/Bat/FEspeLN4zmn80fYdmyv/Hjjx6ORJGIiBwfGHrVVQWEWQ7iueQD1vVahXW/PSH+RWoPZuwYzs9ZsQB0SMojLi4fsA8MBdS2RURERETkHOk78yIiUqvKDxz9v4dDufard9jh0wNPtyKmdXqWQZYXeWVGI776qpFau4hIg3Zim6uWXvvxeX8mpY+P4KIie9uWXd7debf5bO744WUGxLfUwFARERERkRqg7ISIiNSq8gNHk5Ks5Jb4cuWSGUz9cwQ20+DC/BUsuvhenhtbzIIFPs4OV0SkVpVPnJcNDP358ww8l7zMF73+wXn7V2KYNr5I7cH1m96m19JXeeS1iwFISrISF1d40sBQfatHRERERKRqlEQXEZFaVT6pU1aVPvG5bCwD/o+hP8wgH1+6Bf3Guqtu58LAHxk/PoDff1f3MRFpGMratqSmuvH1R5lMjp1I7y/uJPLQp7hbSlmXdik3bHqLO354mZ+zYpk6NatC9bkS5yIiIiIi1U9JdBERcZqyqvS9e92ZOdOPdWlxXL1uAVty2uFTmsklm/6F51cf8s5/vZ0dqohIjTixZcvhwwYtvA7g8/5MxuYM4tYWH+JuKWWX90XcsOktEvs9x7//18SROI+NLa5QfS4iIiIiItVPpX0iIuI0ZRWTKSkWYmOLiY8P4obhAdww620+v+NJzktZy1MdppMa+DMp+0ayYHGwBo6KSL1SVnneunUJHcL2Y85fxrpen+J+bGDourRLmZE4nJ+yOgEQnZTHiBF5FZ5DA0NFRERcX2ZmJiUlJWfcJjQ0lLS0tFqKqOZoHXVLQ1mH1WolKCjonJ9fSXQREXG68HCbo5IyMrKIApsfv3R5hMM7o+n05xzCdn9B9ku7WfbRS3Tr5kV4eKGzQxYROWcpKRYWLPBh0CB7MryF1wHyX3uLVs0+pp3l5OR5374FzLouk/j4IPr3LwDQ0FAREZF6pqSkhOLi03+rzDAMx3amadZWWNVO66hbtI7KUzsXERGpE8oqKb/+2hOA+Acbc8PMO7nl2/+QWhhMQO4uPo4bzM4Pfzmp/YGISF13uoGhjZa8zLpeN57UtiXl5oncObEFAEOH5p3UskW9z0VEREREao8q0UVEpE4ZMsRemdm/fwHbtlmZOLEry9v/h2sPPU1TtnDHkUfYNm8wL738AN26FakqXURcQlnblquuKuDrj7KYHDOH3l98hLulFCywPu0SZiQO58esCwD4d+zxr6IGB9vUskVERERExIlUwiciInVKTEwJU6Zk07t3IUlJ9s96n58dyWXL3+SdPTdhYBK94x3e7DaGtR8XqypdROqs8j+fygaGer//MmNzbufWlh/gbillt/eFDNz0Jtv7Pc/z/2vqGBgKatkiIiIiIlJXqBJdRETqrP79j7JwoQ+zZmWSmmrhiYmPENa9DX9Lnc7fwjdwUUESP658iunTu6oqXUTqnLK2LR3C9+P5xWLW9UpwDAw9sfK8/bGBoeUT56o+FxERERGpG1S2JyIidVZ0dAmjR+cSF3e8Kv2et//J9RveYv/RCAIKD3DJuge5tslnJCR4OjlaEWnoTvxmzKaPsngh5nmu+GIol1vsrVvWp13CwE1vMvj7V2h80fmOyvOygaHqdS4iIiIiUvcoiS4iInVW+WRS//5HAZg1K5MbRjXlmo0L2OPVDW9rAbO7PMatHq+wbq0b48cH8Pvv+qKViNSO8onzsr7nP32eSfqMVxmXczu3tVzuaNty49dvsL3f8wyd2BI49cBQERERkdpk5h3B9v0GbB/9D9uK97B9vwGzsMDZYYnUOcoyiIiISyhflT5tmh+ZxT70WvYq489/lfvb/JdOKUvY9EoSK3+eBPgwZUq2s0MWkQag/MBQ95wUXoh5jSu+WGEfGAp8mXYxM3YM54fMzgCcn5RHXFw+oIGhIiIi9cGWLVtYsWIFu3btIjMzk7Fjx9K9e3dnh1Uptg2fYb47F0oqfphvBjbGMnwsRlSMkyITqXtUiS4iIi7hVFXpM2flEDxsMPf+NJliNy96BP/IJ3GD+Xv0Lxo2KiI15sSBoc29DuK9fBZt/nu3o/I8Nbgr7zV/mUHfz+b/HmtVoW2LBoaKiIjUH4WFhbRq1Yq77rrL2aGcFfPnbzDfecWeQI9ojhH3N4zLroLGoZCVge0/kzAz0pwdpkidoUp0ERFxOeWr0rdutfJp8pV82SOYi358hqbsI+zrsXyyeTxfte5NXFyheguLSLVyDAyNOIDHmsWs7/UJ7vtOXXkOEBtb7EicR0cXq/pcRESkHunSpQtdunRxdhhnzfbpUgCMXv0wbr8PwzAAMIsKsU15FPbswFz2DsbwMc4MU6TOUBJdRERcTvkE1LRpXgDc+WhnfK3zmd7pafpFrGNy7PO8N/cPXt98H15+HgwalKdkuoics5QUCwsW+DBoUB6bPspmUsxcrli7Anc3e/J8Q3p3ZiTew/eZnenbt4CVY9JITLQSHx8EoMS5iIiIAFBcXExx8fH2KYZh4OXl5bh+OmWPnWmbyjJ3J8Ku7eBmxXLdbRiW49/gNRp5YgweSelzD2P+9BXk3YPh61/lYzqevxrX4UxaR91SG+tQEl1ERFzakCF5AFx6aQGJiR7cO3MKr17/Bn8vep1bW35AevZWBsyfRrdu7oSHFzo5WhFxFeWT5uHhNrZutbLo1SPckDeHsbmrcGtZAsAer26MXnsf/R5ozZDBNr6Ptw8MLV99rrYtIiIiUmb58uUsXbrUcbt169ZMnjyZ0NDQSu0fERFR5RiyV39IDuDV4wpC2nc4eYMmTUhu057indvw+/0H/AbeXuVjnqg61lEXaB11S02uQ0l0ERFxaTExJUyZks20aX7MnOkHwH0f3sNlIZ14pfPjhBz5k4Set7P8wwlER7evkBQTETmd8gNDw6zJeCz5kPW9P8Vjnz15Xr7yHCDqhIGhoOpzEREROdnAgQMZMGCA43ZZ5WxaWholJSWn3c8wDCIiIkhOTsY0zSrFULpjKwCFTVpy6NChU25ju7gX7NxG1vrPOHJJnyodr7zqXIczaR11S2XWYbVaK/1h1Sn3P+c9RURE6pBBg/Jo3bqE+Pgghg3L5Y03LmFp1ByuO/Qk4SRy15FxbH1nKC/NuI9u3YpUlS4iJylffQ7QzPMQXsvnUHpgFRfbSsBirzz/OvgOxif0YMKEbIaEZRIfH6SBoSIiIlIp7u7uuLu7n/KxyiQxTdOscrLTTD5gvxLe9PTPFdPNfpm0DVt+HoaXd5WOeVIM1bCOukDrqFtqch2Wv95ERESk7gsPtxEXV8jo0blkZLgBMPHVdvT8cB7v7bseA5MO29/mjW5jWPtx8V88m4g0FCkpFqZN8yMlxeIYGPrT6iw8ls5mfe+BtN73CYathA3p3fnH129w2bK5jH+tBwBJSVbHz53yA0P1TRcRERGpq0ybDVIP2m9ENDvtdkZoBIQ1gdJS2La5lqITqbtUiS4iIvVGWQJr3ToP3n/fm1mzMklNtfCviRMI7taOPmkz6Ru+ge4FO/lu+RMs/bojQ4bkERNz+q9Nikj9Vr5ty6aPsvl3zGv0XrsCD4u98nxjendmJA7nu8wuAEydmoWnp+moPlfLFhERkYatoKCA5ORkx+3U1FR2796Nr68vISEhTozsNDLToagI3KwQHH7GTY2OXTBTD2F+vwGjyyW1FKBI3aRKdBERqXeio0sYPTqXuLhCkpLsnxcPm3cL1294i335TQgoPEiHjx4m/4v1vPOOj5OjFZHaVr76/PBh41jbllcYm3s7g1q+j4elhD1eXbnp69fZevUknn2vObNmZQIQG1tcofpcREREGradO3cyfvx4xo8fD8A777zD+PHjWbRokZMjO42yVi5hTTDc3M64qRH3NzAMzO83YP7+Yy0EJ1J3qRJdRETqnfKVof37H2XhQh9mzcqkoKAJ1zw2n1X/9whNMn5gZucnORhyLSkH7mLB/wI1cFSkgShr29Ih4iAeaxazvvcnjoGhJ1aet0vKY8SIvAr7q/pcREREynTs2JHFixc7O4xKO94P/fStXMoY57XF6NUPc92n2F55DuPSPtC2A0ZEM4hoDt4+jsGoIvWdkugiIlKvla9K37rVSlZxCN91f4422xYSs3s+TRM/ImPGDt59/0W6dXPXwFGReqj8wNDwcBtffZzD8x1fp/faD/FwOzl53rdvAbOuOz4wFNDQUBEREakfMlIBMELP3MqljHHTXZB3xF6NvvFz2Pg5jrGNHo0gsDFG+04Yf78JI6RyzyniitTORURE6rXyg/4SErwAiH8whP6vjmLo9zPILvajcdZWEuIGse3DLRXaPIiI6yr//3JZ3/OfVmeT9vIcxuXcxuDzlh1r29KFm75+ja1XT2Lws60AGDo076SWLRoaKiIiIvVCVob9MjC4UpsbjRphDB+LZey/MfoMgOgLju9bVAiphzC/XIVt8iOYaclnfjIRF6ZKdBERaTCGDLG3ZOjfv4Bt26xMnNiTJe3mcN2hpwhjB3cfGcPW+Xcx/aV76datSFXpIi6s/MBQa24qz3d8w155brFXnn+VfhEvJQ7nu8yugL1tS1xcPgDBwTa1bBEREZF6ycw6bL8S2LjS+xiGAefHYJwfc/x5CgsgOxNSDmJb/AYkH8D2ziu4jXmuukMWqRNUZiciIg1GTEwJU6Zk07v38YGjz756PnEfzmPJ/gFYsNHxzzeY23U8az4pcXK0InK2ThwY2tQzGa/ls2kz725H5XlacGf+13wGt373H/75WKRjYGj//gVq2SIiIiL1X6Y9iW5UshL9dIxGnhhhTTBiu2F58Clwc4NtmzF3bquOKEXqHFWii4hIg1R+4GhqqoUxE58isGs7rkh7hb9HfMEleYlMGzORbtc2ITq6RC0cRFxA2cDQ6IiDeKxZwpe9P3YMDD2x8hwgNrbYkTiPji5W9bmIiIjUa6ZpHm/nElS1JHp5RmgExiW9Mb9ag7nuU4w27avtuUXqClWii4hIg1R+4Ki9Kt3g7nm3c8PGNzhwNJyg4v3ck3Efi8b+wIIFPs4OV0ROIyXFwtNP2y+/+jiX5zq+wBVr7+AKtw/wsJTwVfqF/PObudz63X8IuLADK1emOarPQb3ORUREpAHJz4PiIvv1s2jnUhnGhT0BMHdvr9bnFakrlEQXEZEGqXzirH//owDMmpXJ4Cea0X/jQvZ4dcPbWsArXZ5giOdLvPSip4aNitQBJw7/3brVymuTk8mZO4dxObcy5LyleFhK2OvVhX9+M5ctV09m0DORgH1gaGxssWNoqNq2iIiISINS1g/dxw/D3aN6n/u8tvbL5AOYR/Or97lF6gBlA0REpMErq0qPiirG09MksziQZc0m8/KOuwBo/MsKenw9lp0/5jg5UhEpGxiamuqGmZGGdcmrbOh9A633foSbebzyvOey1/k2oxtJSVbatbO3dAkOtlebq/pcREREGqTMsx8qWlmGXwA0DrXf2JtU7c8v4mxKoouISINXllBbtcqL+PggAGa8HMiL2+/n7h+mkV3sy4WNN9Phgwc4/M0fFapgRaTmnVh93sQzGa8PXqXk0Xu5pPBDR+X5omYvcet3c7hqZFsNDBURERE5gVlWiV6N/dArOK+N/Th7Emvm+UWcSINFRUREjhk0KI9u3YpISPAkNLSUGTP86XBrV5YWzaHHb08T7b8D21uPk7vlQbZ27Ud4eJGzQxapt1JSLCxY4MOgQXkVBoZGJi7iy16f0mhvMQBfpV/IjB3D+Tajm2PfpCQrAwfmamCoiIiISHnHkuhGQPVXogMY57XF/PkbVaJLvaQkuoiIyDHh4TbCwwvp3buQ8eMDAJg50w9oj6dlHi/EPs+NzT5lQvQMflvyM6ltRjJ/SSiDBuWpLYRINStr23LVVQV89XEuEzu+Se81H9DIrRjcYNPhbsxIHM43GRcCMHVqFp6eJvHxQfTvX6DEuYiIiMiJMtLtl2VtV6qZEd4UEzDTU2rk+UWcSd9FFxEROYXyw0YnTMimwObJrl7jWBP6IEU2K7HF6/GYPoYVc9PZutXdydGK1A/l27YcPmw42raMy7mNO85bQiO3YvZ6debmb+bwx1VTePrd8xxtW8oPDI2OLnbySkRERETqHvNwmv1KcFjNHCA43H55OLVmnl/EiVSJLiIicgplw0bj4gqZNs0PgJkv+wND6BLYhTld/kUT9vFR3BA+/GA89O525icUkb90vG3LIdzXLOHLXh872racWHneJimPESPyKuyv6nMRERGRM8iwJ9GNxiE18/whx5LzWRmYxcUY7io2kvpDlegiIiKnUJaMCw+3nVSV/nNWLMs7zGGvVxd8rEe5Le8Z9kx7m0fG+fD77/p8WqSyThwYuvHjXJ7tMJnea+6gj9tyGrkV8/Xhrtz8zRxu+XYuft1iKgwMBfv/q089hVoqiYiIiJyBaZqOJDrBNdPOBV9/8Ghkv152LJF6Qkl0ERGRv1C+Kj0pyZ4kf2F2S3q9/x9e3XkHAM23Lee6pLG8P6/AmaGK1HnlE+dlfc9/XJ1D2qzXGZ9zG0Nb2du27PO6gJu/mcPvV03l9mfaADB0aN5JLVvCw208/bSS6CIiIiJnlJcLRYX260E1U4luGMbxVjFq6SL1jJLoIiIif+F0VekvTDnCC3/GszHmaYrdvLm48c+MKxzG4W+3VqiuFZHjyhLnqaluWHPTHJXnjTd/hJtZzDfHKs/jlr3JNxkXkpRkpV27EgCCg20V/n8UERERkUoqqwz3D8Rw96i544TY+6KbSqJLPaO/7kVERM5C+ar0pk3tib3DLeL47MJX+TM3Eo+CDPzffIys9z9m6xa1dhGBkweGRnim4PnBf2gz725H5Xl6UCyLmr3Ezd++xj8ebVuhbUtYWCmjR+cSFlbq5JWIiIiIuKiMGh4qeoxR9vzpSqJL/aK/7kVERM5C+cGF06Z5ARAfHwQE4e02jxdin+eGpqt4usM0fl3yMylt7mPBkhAGDcpT5aw0WI6BoU2Ssa5eyoZeKxwDQ7853JXpifc4BoYCxMYWOxLn0dHFGhgqIiIiUkXm4XT7lZoaKlqmrN/64ZSaPY5ILVMSXURE5BwNGZIH2Ctlt22zMnFiADsv/xdrs9txWcp/uKB4LTkv7eSDT6bRrZsf4eGFTo5YpPakpFhYsMCHQYPy2PjxEZ7p8Ba9V9uHhULF5HnfvgWsHJNGYqL12IdSKHEuIiIiUp2S9wNghETU7HGO9Vs3szJq9jgitUztXERERM5RTEwJU6Zk07v38YGjM1/2Z+h/h/J/384lpSAE/yN7+KjHHSQu/k590qVeK9+yBezV5wtnHyXn9dcZn3Mrd7ZafGxgaCf+75s5/NZ3SoWBobGxxY6hoWrbIiIiIlK9zP277VdatK7R4xiBwfYrSqJLPaO/5EVERKpB+YGjEyZk80NmZ96Pnss+r074uedxV/EEvBPeYNMGNyXSpV4qPzDUzDyM29K5bOx9PZF7PsTNLObbjC7837GBoV9nXEjSLvcKA0MBDQ0VERERqQGmacKB3QAYzVvV7MECG9svlUSXekZ/xYuIiFSD8gNHy6rSJ80+j17vv8bcpEEA3BO5kCbvPcLyt/OdGapItTmx+rxsYGjJI8PpUWhv3bLfsxOLm03nn9+8xt9GtmPWrCxAA0NFREREak1GGhzNBzcrhDer2WMF2FvzUXgUs0B/90j9oZ7oIiIi1aB8/+b+/Y+ycKEPzz2XSVqalednPoRH+/b8I28SFzX+lU77hjP34SeJuzuamJgSJ0cucnbK9zp3DAyNOEhk4iI29Pq0wsDQGTuGs+nwhYABQFKSlYEDczUwVERERKQ27dtlv2zSAsNas6lAw9MLvLztSfvMDGjiXaPHE6ktqkQXERGpZmVV6Xv3ujNzph8AT33Qj2u+Wsjv2VE0Ksrmrtyx7J+7BNOmthXiWsq3bfnq41ye6/gCvdcMpd2BFTRyK+brw125+Zs53Pzta2w6fBFTp2Yza1YmYK8+V8sWERERkdpl7toOgNH8vNo5oKMv+uHaOZ5ILVASXUREpJqVJQlHjDjiSB6OGpXLnvzmbLv2JXa36I/FMOlb8DYFLz7L7Mk29UmXOq1825bDhw2aeibjtXw243JuZch5S2nkVsxer87c/M0cfr9qKk+/e57j3C8/MDQ6utjJKxERERFpWEzTxPxho/1Gx661c9BjfdHNbPVFl/pD7VxERERqSHi4zZE8jIwsAsDdx4Nv245m5sfdmdplEh6JP3Hd0XvZv+FRwm+KdHLEIqdW1ralQ8QBPNYs4cven+Cxz96KaNPhbsxIHM43GRcC0CYpjxEj8irsr7YtIiIiItXLzD+C+fkKzM3fQ2EBNGuJcWFPjC6XVmzZsmcHpB4CDw+MzhfXSmxGQGNM0HBRqVeURBcREalBZcnD8eMDAIiPPzZohwH8ntOeOV3G08Z3L+GrxpDtdhdv7LyVQYPz1epCnKp83/PwcBubPspmUsxceq/9CA83e/L8q/QLmbFjON9mdKNv3wJmXZdJfHwQ/fsXAGhoqIiIiDQYq1atYsWKFWRlZdG8eXOGDh1KdHR0jR3PPJyGbcZTkLz/+J0pBzB/+hqz2XlYbhuBEdXRvu2mtQAYnbrb+5XXhmOV6EqiS32iJLqIiEgtGDLEXpnbv38B27ZZmTgxgH53hZNQ+iqtNs7k2qaf45vwOu0OJbH9gpGE99VbtNSu8onzsr7nHcL3c1H6QsbmrsatpT15vserC2PW3sfVD7Rh0GAb38bD0KF5REcXV2jZoupzERERaQg2bdrEvHnzGDZsGOeffz6rV6/m3//+Ny+99BIhISHVfjyzuBjbfybZE+hBIRgDB2MENsb88zfM9Z/CgT3Ypj6KcXk/jGtvOZ5Ev6xvtcdyWkH2nuhmRlrtHVOkhukvdBERkVoQE1PClCnZACQkeAIcGzrqB/yb7zMv4InoGVzTZA3pS//EjB6H0by18wKWBqcscX7VVQW456TwQsxrXPHFCtwt9kryjendmZE4nO8yuwDQLimPuLh8AIKDbUqai4iISK359ttvz2m/2NhYvL29qzWWjz/+mD59+nDllVcCMHToUH799Vc+++wzbrvttmo9FoBt8Zv2Fi2+flj+9QJGcBgARvQFmH+7DnP5fMwvV2F+uRLzy5X2ncKaQvsLqj2W0zFCm9jbuaQeqrFjmKYJBUcxvKr39RQ5HSXRRUREaln//kdZuNCHWbMySU21MHFiAAE3XMOSgtb03v4szbz2U/zcON5vNJqY4ZcTE1Pi7JClnipffX74sEELrwN4vz+Hlgc+o11Le/I8Nbgra72GMj6hB1OnZjHY83jbFrVsEREREWeYPn36Oe03adIkIiOrbw5RSUkJSUlJ3HDDDRXu79SpE3/++We1Hcf842dsiX9wOD8X84tPAbDcNdqRQC9j+PpjDB6JeWFPbO/OgeQDYHXH8s+hGBZLtcXzl8Kb2i9TD2HabNV6bLOkGHPDZ5irlsPhVIiKwXLPOIyAoL/eWaQKlEQXERGpZdHRJYwenUtcXCHTpvkBZVXpFxPovpCZFzzJFWGb+Gf+C3z/n82YL92J4dHIuUFLvVQ2MLRj+D4afbGYdb0+xX2/PSH+ZdrFzNgxnB8yOzu2j40tdiTOo6OLVX0uIiIiTnP33XfTvHnzSm1bWlrKc889V+0x5OTkYLPZCAgIqHB/QEAAWVlZp9ynuLiY4uJix23DMPDy8nJcPxXb9t8xE5aQX7bPtbdg6XThaeMyOnTGeGY2HNgDoRG1X60dEg5uViguwsg6XCHZX7bG0631TMyd27C9Ob1ihfv23zHnz8YSP6HKYZ+NqqyjLtE6Kk9JdBERkVpWPvFYviq9oMBg3LhAUm9+mq0H3iVq+ztcVJRA0cStLPB+lgF3BWngqFTJiQNDv/4okymxr3LFF59gPda2ZX3aJcxIHM6PWRfQt28BK8ekkZhodQzFVeJcRERE6oLIyEjatm1bqW1ttpr9HfpUibvTJfOWL1/O0qVLHbdbt27N5MmTCQ0NPe3zH73wUgrcLBhWdzwvuRzPmK6VC6ySHzLUhENNmlOyfzeNiwvwbNLkpMcjIiLO6vkKfv6GtCmPQGkplsBg/G8dhkertqT+azjm7z8S7uuDxc+/usKvtLNdR12ldfw1JdFFREScqHxV+tat9rdlTy+Dzc0H8eyC7rzd8zE8k3dxY/EI9q8aTfiQi5wcsbiaUw0M7Ri2lwvTFzA2Zw2WFvY/Knd5X8TDq+/jmvjzGDrExo/HBoaWrz5X2xYRERGpCyZPnkzTpk0rvb3FYmHy5Mk0a9asWuPw9/fHYrGcVHWenZ19UnV6mYEDBzJgwADH7bJke1paGiUlp2nj2LIdxnlRREREkJycjHmo5nqNV5fSkHDYv5vDW3/DEtHScb9hGMfXYZqVei4zJ4vSyU9AaSlGl0sx7nqII2XV9U1bwsG9HPrsIyw9+tTEUk7pXNZRFzWkdVit1jN+WPVXlEQXERFxovJVvdOm2b/GWVbxC925bOV7zO7yKN0b/0KHDRP5/vebaPnQIMKb1mJPQ3FpFQaGZh3kxU6vcsW6BEfl+RepPZixYzg/Z8UCEH3CwFBQ9bmIiIjULa1ataqVff6K1WolMjKSzZs30717d8f9mzdv5qKLTl384u7ujru7+ykfq0wS0zRN10h2htk/5DCTD5wy3rNZh23dp5CbBU1bYgwbDR6NHPsaXXtgHtyL7ZdvMC69otrCryyXeT3+gtbx1/QXuIiISB0xZEget9+ex8KFh5kwIRuAW0Z48lX3qczZORiArplLMV56jLTtGc4MVeq4lBQL06b5kZJi4fBhg/O89+G7bDpt5g/n5uYfYbWUkhJ6EQtbzOaOH17mtsdbMGtWJoAGhoqIiIichQEDBrBmzRrWrl3L/v37mTdvHunp6fTt29fZoTlXM3v1ubltc5WSmqZpYn6zDgCj3z9OmhVlRHeyX9m945yPIVIZqkQXERGpI2JiSpgyxZ48T0jwBMoGjgKM4vvMC5h+wdMEZ20hb9ooljR7gsvvjVafdAEqtm0pGxgaE7Ybr3WLWNfrM9wO2M+TNalxzEgczq/ZMY59NTBUREREXMmrr75a6W0Nw+C+++6rsVh69OhBbm4uy5YtIzMzkxYtWvDoo49WqW1EfWB0vhjT6m4fbrp3J5xXuf71J0n6E1IPgkcjjC6XnPx489b2y4w0zLxcDB+/k7cRqQZKoouIiNRBZQNHn3suk7Q0KzNn+hFweXeu+WQBy/qNI7wwkRv2jmffokGYD9yIYXFzdsjiZOXbtnz3UTovdXqZK9avxM1SljzvyYzEYfyaHaOBoSIiIuLS/vjjjwq38/Pzyc/Px2Kx4OfnR25uLjabDW9vb3x8fGo8nquvvpqrr766xo/jSgxvX4wul2B+vwHbp0ux3Puv0w5bPRPbJ4vtz9ctDsPT6xTH8YGQcEhPgX27oH2nKscucipKoouIiNRBZQNH9+5157XXfAFYutQb8Kbnh/N4usOL3N5yOef9Nh/bjM1Y7h6NERB05ieVeqV85Xl4uI3Dhw0ifXbjt/Q/PJzzBZbm9uT5Tp9LGfXZCK5/sDnD7rARr4GhIiIi4uJmz57tuL5jxw6mTZvG3XffTY8ePbBYLNhsNjZt2sSCBQt46KGHnBdoA2f87TrMH7+CHzdhvjUD+l7vaPNSGeYv38JvP4DFgnHNzaffsEVrSE/B3L8LQ0l0qSFKoouIiNRBZVXBKSkWYmOLiY8PYtiwXN54w48R8UUk8yCjlnThxa7/xn3rr2SPe5iMG8YQ2T/W2aFLLSmrPG/duoSOIbuxzl/CmstX43bQnjz/POUyZu4YzubsDgDEamCoiIiI1EPz58/n2muvpWfPno77LBYLPXv2JCsri//+979MnDjRiRE2XEbk+Ri3jcBc8CrmN19gfvMFAAcCg7EFBoG3H3h52SvMPb3Byxs8PKHwKKSl2BPwgNGrH0Z409Mfp0Uk5s/fwN5dtbIuaZiURBcREanDwsNtxMUVMnp0Lrt321u2HO+T3p/fsqN5tesjtPfbic/yJ7AV/hPjulsx3NTepT4qX30O0MZnN7Y33qB1089oe6xty2cplzMzcTi/5UTTt28Bs67LJD4+SANDRUREpF5KSkripptuOuVjLVu2ZNGiRbUckZRn6dUPs9l52FYug22bobAAW9ZhyDrs2OZMY0eNiy7DuHnYGY9htGiNCZj7lESXmqMkuoiISB1XVi28bp0H77/vzaxZmRQUGIwbF8i9TweR6D6TH954i0Et38dMWMz+L7biNXI0oecHOzt0qQanGhgaG7qTtn8uZM3l67AY9j87dvjE8eCq+7hjQgT3eJqOti3R0cUaGCoiIiL1lpeXF7/99huxsSd/I/O3337Dy+vkPtpSu4y20bg98ASmaWIcySHEAmk7/sTMO2KvOj+aDwX5cPSo/banF/j6Y0R3hrbRf91LvUWk/fLQPsySYgyre42vSRoeJdFFRERcRFmf9Li4QrZutb+Fe3qa5Bd48tjvjxHZL5qL/nyJZkd/o/jlBzHvGYVxQXcnRy1VVX5g6A8fpTCr83Su+PJze/LcgFXJvZi5Yzi/57QHIDY2zbFvcLBNiXMRERGp1y6//HJWrFhBaWkpPXv2JDAwkKysLDZs2EBCQgIDBgxwdohyjGEYGP6BeDRpgsU3ENM8Uw36WWgcAt6+kH8EDu6DlpHV87wi5SiJLiIi4iLKJ0OnTbNX1MTHHx8mesuLAznP+yJmd3mUTgFbsb3yHD8F3UTLUbcT3kztXVxJ+erzw4cNonx34r/kPzyUsx6jqf2PjUSfnjy4agQ3jmrCi3FFJCZmOs4HtW0RERGRhuLWW28lOzubjz/+mI8//rjCY5dddhm33nqrkyKT2mIYhn246J+/Ye7bhaEkutQAJdFFRERc0JAh9p7Y/fsXsG2blYkTAxg1KhcI4MZZb7J8yDRiU5fRNXMpuS9vxhwzBiOsiXODlkora9vSKWQHvl++x2eXfYHlkD15/mnyFcxMHMaW3PMB6JyUx4gReRUS56o+FxERkYbCzc2NkSNHMnDgQH7//XeOHDmCr68vHTt2pFmzZs4OT2qJ0SIS88/fYF8ScKWzw5F6SEl0ERERFxQTU8KUKdkAJCR4AuUHjsI18x7lb2FxTOv0DEEZ2yl59iFWBo+l+/0XEx5uc0rMcnrlK8/Dw238+NEhZneeRu8Nq7FY7MnzhOQrmJk4nK25UfTtW8B95QaGAkqci4iISIPWtGlTmjZt6uwwxFmatwLAPLDHuXFIvWVxdgAiIiJSNf37HwVg1qxMJkywJ9ZHjcql461d6LdxIck+MVgKj9L/4ESK334Fs+CoM8OVY1JSLEyb5kdKisXR93zzyoNkTJ7KQzl3cm1Te9/z7b6Xc9WG9zhwzRPc/+9QwD4wNC6u0DEwVEREREQgJyeH9PT0k/5J/WeERtivHE51biBSb6kSXURExMWVHzg6bZq9Gv14Vbofly59g4fbvcYDbd6myc6V2Cb+iuWuhzHatHde0FJhYGijtCTmdJlKn41rHY9/cuhKZuwYzp+5bQFISsojLi4f0MBQERERkfKWLVvGp59+Sm7uqX83WrRoUS1HJLUuJMx+mZGOaSvFsGgmlFQvVaKLiIi4uLJkani47ZRV6Q88eJTivw/m1m//Q441DFIPUTr5EXLffQ+zpMSZoTc45avPDx82iPHfRtD/JtLmvZH0b2JPoB+IuJz/tnyT+36ezLAnQ5g1KxOw97/XwFARERGRitauXcsHH3zA3//+dwAGDhzIwIEDCQ4OpkmTJowYMcLJEUqtCGwMbm5QWgJZmc6ORuohVaKLiIjUI2euSr+QHgmLmNhxMgObrcT7i/ew7foBy92jMSI0dKk2lA0M7RL0OwFfvUdCz02QCjbTYMWhq3hlx11sP9LGsX1sbLEjcR4dXazqcxEREZETrFq1ioEDB3LDDTewePFiunfvTmRkJDfeeCNPPfXUaavTpX4xLG4QFALpKZCRCo1DnB2S1DOqRBcREalHTleVPnVqFgB3joRRvz7HDxc8RmkjX9idSOmzD2Fb9ymmaTox8vqrfPX57yt28t8LH6TX1/F0tmyi1LSwbH9/rvxyCQ/+8jznXdqMlSvTHNXnUPE1FREREZGKkpOTiYqKwjAMAEqOfdPSw8ODAQMGsHr1ameGJ7Up2N7SxUxXX3Spfkqii4iI1FNlVelRUcV4elZMkO9s3IfVl87lq/SLMIoLMRf+B9usiZjZ+upjVZVPmoO9+nzj2zuwvfQk9+WO5IqwTdiw8LtfP65Yv5SM68fw0AsBgH1gaGxssWNoqNq2iIiIiJyZm5u997VhGHh5eZGRkeF4zM/Pr8Jtqd+MY0l0DReVmqAkuoiISD1VVsG8apUX8fFBwPHWLuPGBTJ8/Pnc9t1sPvYaiWl1h99+oOTJeMxfvnFm2C6vbGBoaooFc9tmmi56hKWXDifs8E8U29x4b+8NXP7F+/Rf9By781uSlGSlXTt7xVRwsL3aXNXnIiIiIpXTpEkT0tPTAWjTpg1r1qyhpKQEm83G6tWrCQ0NdXKEUmuCj73WSqJLDVBPdBERkXpu0KA8unUrIiHBk9DQUmbM8GfUKHtvyJkz/TjU4Ua+8LqAiISpdCAR2+x/Y/Tsi/F/d2N4ejs5eteQkmJhwQIfBg3KA9PG38K+JHzBm9gy/6ANUGSzsiWoP98F3cpzK9sxYUI2YWGZxMcHaWCoiIiISBV07tyZrVu30rt3bwYOHMjzzz/PnXfeicVioaCggPvuu8/ZIUptKWvncjjNyYFIfaQkuoiISD0XHm4jPLyQ3r0LGT/e3jbk+LBRmDgxAOiKh+W/vHn9y/QqWoS58XPMLb9guXU4RudLnBR53VY+cb51q5WXX/Lico9PabNzMW9duBsyoaDUg/f23cCcpCEcKohw7JuUZGXgwFwNDBURERGpon/+85+O6zExMUycOJFNmzYB0LVrV2JiYpwVmtQyIygYEyBbLXyk+imJLiIi0oD073+UhQt9mDUrk9RUCxMnBlSoSt8eM5ygoK40XzudxhnJ2Gb/Gy7ojuWW4Rgh4U6Ovm4pa9ty9RVZZL2/ii97L6H55mQAcop9WLD3Jt7afSuphSEATJ2ahaen6ag+V+JcREREpGqKior48ssvad++Pc2bNwegbdu2tG3b1smRiVMEBNsvs5REl+qnnugiIiINSNmw0bi4QpKS7J+lz5zp56hMnzgxgAGj+3Dpp0v4wvN2cLPCr99he2oktoQlmCXFzgzf6coPDc0+kMPD7eYS+cYdXHt0Fs29kslzC+LL4Hu49ItPcL95CO98aDJrln1Ya/mBodHRDfu/o4iIiEh18PDw4O233yYnJ8fZoUhdENjYfpmXi1lc5NxYpN5RJbqIiEgDUr76uXxVekGBwbhxgRWqpa3/GEJmcE+OvDGXFvm/YC6fj/n1F1huH4HRvpOTV+IcW7da+d+reVx79A267l7Jpe0KoBh25zVnTtIQlh24hkJbIwCSkvIYMSKvwv6qPhcRERGpXmFhYWRlZTk7DKkLvH3A3QOKi+zV6KERf72PSCWpEl1ERKSBKl+V3rRpCQCeniYFBQYABw+68WViW+KWvs62HuPBLwCS92Ob9gS2N6dj5mQ6M/xaUb7y3Ny3C58lL7Gh9/W02fMBjYwCfstuz/0/TaL3+mW8u+9GLr/yeOV5//4FABoaKiIiIlKD+vfvzwcffEB+fr6zQxEnMwzjeDW6WrpINVMluoiISANVvip62jQvAOLjgxyPjxsX6Lj+363XMPbBruyf/R6dslfAN+swf/0eY+BgjF5XY1jcajX2mlR+YGjagWL2L16L5dASbNnb6ApggT1eXfk+6FZGJ/RmwoQcrg7LIT4+iKFD84iOLq7QskXV5yIiIiI1Z9++feTm5jJy5EhiYmIICgqq8LhhGNx5551Oik5qXWBjSEvGzMrAcHYsUq8oiS4iIiIMGWJvO9K/fwHbtllPGjgaGVnCxp+CiX93Ah++fCVdtr4Me3ZgvjsHc9MaLDffDW2j7dUfLi411Y2Vrx9kiPu7RP35BS92yodsKLa5sTK5D3N3DWJzdkfH9klJVuLi7JVPwcE2Jc1FREREatGqVasc17/77rtTbqMkesNhBAZjAmQfdnYoUs8oiS4iIiLExJQwZUo2AAkJngCOYaNgHzha5r/rOvPleXO4e8BSfNe8A7sTsU15BM5ri3HltRgX9sRwd6/dBVRRSoqFRe9YGNLhU1psWMXKy7bDb/bHduc1Z2/L/uRf8De27wtl8y9+FXrH9+9foJYtIiIiIk6yaNEiZ4cgdUmA2rlIzVASXURERCooP3A0NdVyUlV648Y2pr0USKtZ/6Dng3GEbLIPHGXPDsy3XsJc+jZGr34Yvf6OERD0F0dzPnPPTor/9zl3bFuH73Z7RXmRzcrK5Ct4d9+NfH24GyYWmH98n9jYYkfiPDq6WNXnIiIiIiJ1gXqiSw1REl1EREQqKD9wdNo0ezV6+ar0N97wBez900ePtjJmzAOYA4dgfrkSc92nkHUY86P/YSYsxbiop706vVU7p6zlVEybDfbvJve7Xzmy/ivCC7bTBMAKSXkteXfvQJYeGEBG0fEPAPr2LWDMmFwSE62OvvFKnIuIiIiI1DHHkuhmZrqTA5H6xuLsAERERKRuKUsOh4fb6N//KADPPZfpqEa/6SZ7tfaoUblERhYxfnwAf+xpjOWam7FMeh3jnnHQpj2UlmB+sw7b82MofWE8tu83YJaUOGVNZuZhsj5dyx9jZlIyeii2iQ/hs+ptwgu2U2q4syOoDzd/M4flF8zD67obyCgKYsKEbGbNygRg6NA8YmOLiYsrVNsWEREREScbO3Yse/furfT2NpuNsWPHsn///hqMSuoCIzTCfiUtxbmBSL2jSnQRERE5rbKq9L173XntNXsF+tKl3kDF6nSAKVOyMaxWjIsug4suw9yViLn2I8zvN8LObZg7t2EGBmN0vxxaRmI0Ow8immG4e1R73GZhAWz/HfOPnzG3/AKH9uEHtC/boJEn22xdePeXOD482I/M4kAAvnn5+HOcODAUVH0uIiIiUhfs27ePoqKiGt/nr7z//vv89NNP7N69G6vVyrx586r1+eUchDaxX2amYxYVYng0cm48Um8oiS4iIiKnVZY0TkmxEBtbTHx8EKNG5TJz5snDNVNSLCxY4MOgQXmEh9swWrfDuHs05k13Yq7/9Hirl8+WA2ACuFmxRTTncLtobMHh0Ow8aN4KAhtjGMZp4zJNE47mQ14uHMmFvBzMI7mQnoK5bTPs2Aqlx6veTcOgICyK17+Ko+ttHWh8URRffePDvA/L+r3b1zRhQjZhYTYNDBURERGp46ZOnYq7k4fZl5SUcMkllxAVFcXatWudGosc4+sHXj5wNA/SU6BpS2dHJPWEkugiIiLyl8LDbY5WJpGR9goeT0+TggJ7ovvgQTcyMixMn+5Ht25FhIcXOvY1AoIwrrsN8+//xPxpEyT+gXlgD+zfDQVH4cBu8g/srnhAb19o3gqjSXMoKcF0JMtz4UgO5B+B0jMntksDw0kN6cozi3tx3bh25NoCePHtQHi64nblK+qTkqwMHJirgaEiIiIidVivXr3OaT9/f/9qjePmm28GYN26ddX6vHLuDMOA0AjYuxNSDymJLtVGSXQRERGplLKE8vjxAQCOAZsA48YFOq4nJHgSHV1coSodwHB3x7i4F1xs/6PHNE3ISIP9e/DLOUzO1t8w9++GlAP2JPn23zG3/37moDwaga+/veLExw/DL5CD3jHc/PTfmLusEfMX+JCQ7EPCmNM/xYkV9Uqci4iIiNRt999/v7NDOGfFxcUUFxc7bhuGgZeXl+P66ZQ9dqZtXEFtrMMIa4K5dyekJdfYcfR61C21sQ4l0UVEROSsDBmSB0D//gVs22Zl4sQAx9DRmTP9iIws4auvGp2yKr08wzAgOAwjJBz/Jk3IO3QI0zQxi4vg0P5jCfWD4OEBvv4YxxLl9oS5PXFe1k/d0Urmujx2bLWyJz+ExB2ZREbaW7qUj2/ChGzi4opITLQSHx9EbGyxo21LdHTxKWMVEREREakOy5cvZ+nSpY7brVu3ZvLkyYSGhlZq/4iIiJoKrVbV5DqyItuR+8NGvPNyCGrSpMaOA3o96pqaXIeS6CIiInJWYmJKmDIlG7BXnUPFligTJwY4rp+uKv1MDHcP++DRlpGVjmnrVivTp/vRunUJK1bYK3nKV8qf2LJlxIi8Cvur+lxEREREABYvXlwhyX0qkyZNok2bNuf0/AMHDmTAgAGO22WVs2lpaZSUlJxuNwzDICIiguTkZPs3Ol1UbazD5m3/3f9I4hYKDh2qkWPo9ahbKrMOq9Va6Q+rTrn/Oe8pIiIiDV7//kdZuNCHWbMySU21nHNV+tk6cYhpQsLJifPy+vYt4LrrjjpatgAaGioiIiIiJ+nXrx9xcXFn3KYqiTh3d/fTDkStTBLTNE2XTnaWqdF1RMXYL3dsxZaTheEXcObtK8HMzgQfXwxrxddOr0fdUpPrUBJdREREzll0dAmjR+cSF1fItGn2io8zVaX37n3uSfTyifPUVDdH5Xm7diWnbdsSFmYjPj6IoUPziI4urtCyRdXnIiIiInIif3//ah9AKrXLCI2Alm1g707Mn7/BuPzqc34us6gQ8905mF+tgQu64/bAE9UYqbgSJdFFRETknJVPRFemKn3dOg8SErwYMiSPmJjTf131VMoS51ddVeC478TK8xPbtsTF5QMQHGxT0lxEREREqlV6ejpHjhwhPT0dm83G7t27AXtfZk9PT+cG18AZ3Xpg7t2JueYjzIt7YzRqdNbPYdpKMd+agfnjV/Y7fv0Oc9tmjPadqjlacQVKoouIiEi1OJuqdMDRV/1MylefHz5s7xeZmGiloMB+fdSoXNq2LWHHDiszZ/oxdWoWnp6mo22LWraIiIiISE1ZtGgR69evd9weP348AE899RQdO3Z0VlgCGD37Yq75CA7uxTbtcYw+12CEN4eAQGjkBVYruLmBm9XRl76MaZqQdgjbojdh8/fgZoXgMEg9iC1hCW5KojdISqKLiIhItThdVXpBgcG4cYEVEtyXXlrAtGl+DBqUR0TE6XvWnc3AUIDY2GJH4jw6uljV5yIiIiINxMGDB8nIyKCoqAh/f3+aNm2Kt7d3jR5z5MiRjBw5skaPIefG8A/Ecu94bDOfgV3bMd/czmn/6nCzgsUChgGGBTCh8Ni3X63uWIaNgfPaYHt0OGzbjJmRjhF87n3xxTUpiS4iIiLVrnxV+tat9l83PD1NRwV5YqIHM2fak+M9exbRpMnxfctXn1dmYOiYMbkkJlod2yhxLiIiItIwbN++nc8//5xffvmFnJycCo9ZLBZatWrFZZddRu/evWs8oS51jxEVg+W5OZhffIy5/Q84nAa5WVB6wrdUS0vgxC+uGgZ06Ixl4BCM89rY72vbAXZswfxhA1x9Y20sQeoQl0ui//TTTyxdupQ9e/bg6elJdHQ0Y8eOdXZYIiIiUk75RPa0aaevII+PD+Lee48QEQE33GAhLKy0QvV5ZQaGlq8+V9sWERERkfpv9+7dzJs3j61bt9KsWTMuvvhiIiMj8ff3x8PDgyNHjpCSkkJiYiLvvfceixYtYuDAgQwYMACr1eVSYVIFRlAwxo13OG6bpmlPopeWQmkxlJTY/5km2Ertl6YJgcEn9VE3Lu6FuWML5k9fK4neALnUT45vvvmGuXPncuuttxITEwPA3r17nRyViIiInMmQIXkAXHppgaMC/aab8lm61JtRo3IJDS3liScgKspKWFjpKavPzzQwFFR9LiIiItKQPPbYY/Ts2ZMhQ4YQGRl5xm0LCgrYtGkTH374IaWlpfzjH/+opSilLjIMw94P3WoFzm7YqNE+1t4SZt8uTJuKdxoal0mil5aWMm/ePAYPHkyfPn0c9zdt2tSJUYmIiMhfiYkpYcqUbKZN83Mkw5cutX+dtnxyfMECb4KDbX9Zfa6BoSIiIiIN27Rp02hSvh/gGXh6etKnTx969+5Nenp6DUcm9VpYE/DwgKJCSE2GZs2dHZHUIpdJou/atYuMjAwMw2D8+PFkZWXRqlUrBg8eTIsWLU67X3FxMcXFxY7bhmHg5eXluF6flK2nvq1LaofOH6kKnT9SGYMH59O6dQnx8UEMG3aEN97wZdSoXAwDZszw49NPvfj0Uy/H9idWn9944xFGj86lQ4cSwsNNxo49cuxRnXcNmX7+SFXpHJKq0PkjVaHz59xVNoFensViISwsrAaikYbCsLhBs1b2QaX7kqDLhc4OSWqRyyTRU1JSAFiyZAlDhgwhLCyMjz76iKeffpqZM2fi6+t7yv2WL1/O0qVLHbdbt27N5MmTCQ2tv1N0IyIinB2CuDCdP1IVOn/kTJo0gfBwSE+HnTvt79vlE+Unev118PKCQYNg8GAfOnf2oXNngNPvIw2Xfv5IVekckqrQ+SNVofOnah544AHGjh1Lq1atTnps7969TJkyhVdeeaX2A5N6yWjRGnPXdsx9u5wditQypyfRFy9eXCHJfSqTJk2yN/4HbrzxRi655BIA7r//fkaMGMHXX39N3759T7lv2eCIMmWf8KalpVFSUlIdS6gzDMMgIiKC5ORkx38vkcrS+SNVofNHzsa998K6dR4sWBDMrFmZFBZaGDs2gBdfzCYmpojERCvx8UG0aJFGeLiN0aO9CQ/P59Ahm7NDlzpIP3+kqnQOSVXo/JGqqE/nj9VqdVqx4pnyO8XFxaSlpdVyRFKvNW9tv1QSvcFxehK9X79+xMXFnXGb0NBQjh49CkDz5sf7Dbm7uxMeHn7Gnlbu7u64u7uf8jFXf5M6HdM06+3apObp/JGq0PkjldW+fTGjR+cSF1dIaqobADExRcTGFlfYLiys1DEwVKeWnIl+/khV6RySqtD5I1Wh86fmpKSkOFr6ilQHo0lzTMBMO+TsUKSWOT2J7u/vj7+//19uFxkZibu7OwcPHqR9+/YAlJSUkJaWVq9bs4iIiNRH4eE2R3K8LIleRkNDRURERORM1q1bx/r16x2333jjjZOS5UVFRezZs4cOHTrUdnhSnwWF2C8zD+vDrwbG6Un0yvL29qZv374sXryY4OBgQkNDWbFiBYCjvYuIiIi4nvBwG089Zb8su12WYBcREREROVFRURE5OTmO23l5eRQXV/xGo7u7Oz169ODmm2+u7fCkPgsMtl8WFmDm5zk3FqlVLpNEBxg0aBAWi4VXXnmFoqIi2rZty5NPPnnaoaIiIiJS94WH23j6aTh0yKaWLSIiIiLyl6666iquuuoqAEaOHMmYMWNOOVhUpLoZjRqBty/kH6E0PQU8vJ0dktQSl0qiW61WhgwZwpAhQ5wdioiIiIiIiIiIONns2bOdHYI0NEHB9iT64TRocp6zo5FaYnF2ACIiIiIiIiIiIpWVnp5+TvtlZGRUcyTSIAXZW7qUpKc4ORCpTUqii4iIiIiIiIiIyxg1ahRvv/02ycnJf7ltSUkJX3/9NePGjWPt2rW1EJ3Ud8axvuilh9OcHInUJpdq5yIiIiIiIiIiIg3bE088wX//+19WrlxJ27Zt6dixI61btyYgIAB3d3eOHDlCSkoK27dv59dff6WgoID+/fszYMAAZ4cu9UFZEl2V6A2KkugiIiIiIiIiIuIyoqOjeeGFF/j555/5/PPP+fTTTykqKjppu7CwMK6++mr69u1LUFCQEyKVeilIlegNkZLoIiIiIiIiIiLicrp06UKXLl0oKSlh9+7dZGZmUlRUhJ+fH82bN6dx48bODlHqISMoGBMoPZzq7FCkFimJLiIiIiIiIiIiLstqtdK2bVtnhyENRYD9Ww2lGYc1bLIB0WstIiIiIiIiIiIiUhkB9m842HIyMW2lTg5Gaosq0UVERERERERExGUdOnSIzz//nAMHDpzUG90wDJ588kknRSb1kp8/GBaw2SAn21GZLvWbkugiIiIiIiIiIuKS9u7dy+OPP07jxo1JTk7mvPPOIzc3l4yMDIKDgwkPD3d2iFLPGBY38A+A7EzIzlASvYFQOxcREREREREREXFJ7733HhdccAHTp08HYMSIEfznP//hX//6F8XFxdxyyy1OjlDqpWOJczM7y7lxSK1REl1ERERERERERFzSrl276N27N4ZhAGCaJgBdu3bl2muv5d1333VmeFJPGf7Hqs+zM5wbiNQaJdFFRERERERERMQl5eXl4evri8Viwc3Njby8PMdjkZGR7Nq1y4nRSb0VaB8uSnamc+OQWqMkuoiIiIiIiIiIuKTGjRuTk5MDQEREBFu2bHE8tnfvXjw9PZ0VmtRnjnYuSqI3FBosKiIiIiIiIiIiLun8889n+/btdO/enZ49e7JkyRKysrKwWq2sW7eOyy67zNkhSj1kBARhgtq5NCBKoouIiIiIiIiIiEu68cYbycy0VwPfcMMNZGVlsXHjRgzD4NJLL2Xw4ME1ctzU1FSWLVvG77//TlZWFo0bN+ayyy7jxhtvxGpVuq3eK6tEz1ISvaHQ/9UiIiIiIiIiIuKSIiIiiIiIAMBisXDXXXdx11131fhxDx48iGma3HPPPURERLBv3z7mzp1LQUEBQ4YMqfHji3MZwWH2K4dTnRuI1Br1RBcREREREREREZf06quvkpp66kRmWloar776ao0ct3Pnztx///1ccMEFhIeHc+GFF3Lttdfy3Xff1cjxpI4JbWK/zM7ELDjq3FikVqgSXUREREREREREXNL69eu56qqrCAsLO+mx3Nxc1q9fz/33318rseTn5+Pr63vGbYqLiykuLnbcNgwDLy8vx/XTKXvsTNu4gnqzDl8/TL8AbLnZGOkpGC1aOzukc1JvXo9aWIeS6CIiIiIiIiIiUu8cOXIEd3f3WjlWcnIyn3766V+2clm+fDlLly513G7dujWTJ08mNDS0Uscpa13j6urDOlKaNKcoN5vA4gK8mzRxdjhVUh9eD6jZdSiJLiIiIiIiIiIiLmPLli1s2bLFcXvNmjX88ssvFbYpKiri+++/p3nz5mf13IsXL66Q5D6VSZMm0aZNG8ftjIwM/v3vf3PppZdy5ZVXnnHfgQMHMmDAAMftssrZtLQ0SkpKTrufYRhERESQnJyMaZqVWUqdVJ/W4d60BUXb/yDzzy1kR0Y7O6RzUp9ej79ah9VqrfSHVafc/5z3FBERERERERERqWV//PFHhUT32rVrT7ldSEgId99991k9d79+/YiLizvjNuUTcRkZGTzzzDNERUVxzz33/OXzu7u7n7Y6vjJJTNM0XTrZWaY+rMMaYf+Axkw75PJrqQ+vB9TsOpREFxERERERERERl3H99dfTr18/TNNk+PDhPP7447RuXbEntbu7O56enmf93P7+/vj7+1dq27IEeuvWrbn//vuxWCxnfTxxXdamx5LoqYecHInUBiXRRURERERERETEZXh4eODh4QHAK6+8QlBQEFZr7aa4MjIyePrppwkJCWHIkCHk5OQ4HgsMDKzVWMQ53MKO9UHPSHduIFIrlEQXERERERERERGXVNZa5cCBA2zZsoXc3Fz69OlDYGAgGRkZ+Pr6OhLu1Wnz5s0kJyeTnJzMiBEjKjy2ePHiaj+e1D1ujUPsV3IynRuI1Aol0UVERERERERExCXZbDbmzp3LunXrHPd17tyZwMBAXnvtNVq3bs3//d//Vftxe/fuTe/evav9ecV1uAUF268UHMUsLMBodPbtg8R1qFmTiIiIiIiIiIi4pPfff5+NGzcyePBgpk2bVuGxLl268MsvvzgnMKn3DC8f8Ghkv5GtavT6Tkl0ERERERERERFxSevWreMf//gHAwYMoGnTphUeCwsLIzU11UmRSX1nGAYEBNlvqKVLvackuoiIiIiIiIiIuKSMjAyioqJO+Zi7uzsFBQW1HJE0KGVJdFWi13tKoouIiIiIiIiIiEsKCAg4bbX5wYMHady4cS1HJA2JcSyJbiqJXu8piS4iIiIiIiIiIi6pS5cuvP/++2RkZDjuMwyD/Px8Pv30U7p16+bE6KTeCzj2IY2S6PWe1dkBiIiIiIiIiIiInIubb76Zn3/+mYcffpiOHTsC8N5777Fv3z7c3Ny46aabnByh1GeGfyAmKIneAKgSXUREREREREREXFJgYCCTJk0iLi6OXbt2YbFY2LNnD507d+a5557D19fX2SFKfRZor0RXO5f6T5XoIiIiIiIiIiLisgIDA7nnnnucHYY0RGWDRbMOOzcOqXGqRBcRERERERERERE5S0ZYU/uV1IOYNptzg5EapUp0ERERERERERFxWdu2bWPjxo2kpaVRVFRU4THDMHjyySedFJnUeyHh4GaFoiLIPAzBoc6OSGqIkugiIiIiIiIiIuKSvvjiC+bMmYOvry9NmjTB3d29wuOmaTopMmkIDDc3CI2A5P2Qsl9J9HpMSXQREREREREREXFJK1as4NJLL2XkyJEnJdBFakVEM0jej5l8AKNDF2dHIzVEPdFFRERERERERMQlpaWl0adPHyXQxWmM8Gb2K8kHnBuI1Cgl0UVERERERERExCU1a9aM7OxsZ4chDVmEPYluJu93ciBSk5REFxERERERERERl3TrrbfywQcfkJGR4exQpIEyWrWzX0n8AzM3x7nBSI1RT3QREREREREREXEZkydPrnA7Pz+fUaNG0apVK3x9fSs8ZhgG48ePr83wpIExmreC89rCnh2YX6/FuOoGZ4ckNUBJdBERERERERERcRl79+6tcNtiseDv709GRoYq0sUpjMuvwpy/AzNhCWb7ThgtI50dklQzJdFFRERERERERMRlzJ4929khiFRgXNoHc+Nq2LUd23MPQ4vWGM3Og8Bg8PQCL2/w9AarO4abG7hZwc2t3L9jtw0LGEa5fxYwOPUlgMUCHNvWYtivl10aFvDxxbCom3d1UBJdRERERERERERc0pYtW4iMjMTT0/OkxwoKCkhKSqJDhw5OiEwaEsPdA8uop7DNexl++Rb2JmHuTTrltmZtBuYXgNHvRixXDazNo9ZLSqKLiIiIiIiIiIhLeuaZZ3j++edp27btSY8dPHiQZ555hkWLFjkhMmloDB8/3EY+jnk4zd4f/eBeOJIDBfmYR49CQT6UlEBpCZSW2i9tthNum4AJpml/DMC02TPvps1+/0n/yj9+7LJMbjbmkrex+fpj6XFl7f9HqUeURBcRERERERERkXqnpKQEi1pZSC0zgkMhOBSj66VOi8E0TSgpwVz+DubnH2IueQuzey8Mq1LB50r/5URERERERERExGXk5+eTn5/vuJ2VlUV6enqFbYqKili/fj2BgYG1HJ2I8xmGAe7ucNNQzG/WQW42bP8dOnR2dmguS0l0ERERERERERFxGZ988glLly513J46depptx04UL2gpeEyLG4YnS/G3PAZ5o+bMJREP2dKoouIiIiIiIiIiMu44IIL8PT0xDRNFi5cSL9+/QgJCamwjbu7Oy1bttRQUWnwjK497En0335wdiguTUl0ERERERERERFxGVFRUURFRQFQWFjIlVdeSePGjZ0clUgd1ba9/TIzHfNIDoavv3PjcVGariAiIiIiIiIiIi7pn//8pxLoImdgeHpDaIT9xv7dTo3FlakSXURERERERERE5CxNnjyZ3bt3k5OTg4+PD7Gxsdx+++1K6kvd07wVpCVj7t+F0b6Ts6NxSapEFxEREREREREROUsdO3bk4YcfZsaMGYwZM4aUlBSmT5/u7LBETmI0b22/okr0c6YkuoiIiIiIiIiIyFkaMGAAUVFRhIaGcv7553PDDTeQmJhISUmJs0MTqcBo3goAc99up8bhypREFxERERERERERqYIjR46wYcMGoqKisFrVPVnqmKYt7JcpBzFN07mxuCj9Xy0iIiIiIiIiInIOFixYwKpVqygsLKRdu3Y88sgjZ9y+uLiY4uJix23DMPDy8nJcP52yx860jSvQOpykcaj9svAoRkE+hrcv4ILrOI3aWIeS6CIiIiIiIiIiIsDixYtZunTpGbeZNGkSbdq0AeC6666jT58+pKens2TJEl555RUeeeSR0ybzli9fXuH5W7duzeTJkwkNDa1UfBEREZVcSd2mddS+A/4B2HKyCXEz8GjSpMJjrrSOM6nJdSiJLiIiIiIiIiIiAvTr14+4uLgzblM+4e3v74+/vz9NmzalWbNm3HfffSQmJhIVFXXKfQcOHMiAAQMct8uS7WlpaWfspW4YBhERESQnJ7t0Ow6tw3lsgcGQk03an1uxNPIBXHMdp1KZdVit1kp/WHXK/c95TxERERERERERkXqkLCl+LsqSd+XbtZzI3d0dd3f3M+7/V8dw5WRnGa3DCYJCYG8S5uHUk2J2qXWcQU2uQ0l0ERERERERERGRs7Bjxw527NhB+/bt8fHxISUlhcWLFxMeHn7aKnQRZzIah2ACZKY7OxSXpCS6iIiIiIiIiIjIWfDw8ODbb79l8eLFFBYWEhgYSOfOnXnooYdOW2ku4lRBx1qZZKQ5N44zMAsLIC0ZsjKgIB+ztBRKS6CkBMpXmJ9QbW4YBubNd9RobEqii4iIiIiIiIiInIWWLVvy1FNPOTsMkcprHAKAmVG3KtHNo/mYX67C/PVbSPoTSkvP/jkAbhpc7bGVpyS6iIiIiIiIiIiISD1mNA61J5vrUCW6ueVnbG9Mh9zs43d6+0JQMHj7gNUd3NzAzQoWy8lPcGwwr1Huek1REl1ERERERERERESkPgsKtl9mZWCaJkYNJ53/irnlF2wznwGbDSKaYVx5LUbHrhihEWf9XIZhYFhrNs2tJLqIiIiIiIiIiIhIfRYQZL8sKYb8PPDxdVooZm4OtrmTwWbD6BaHcffDGO4eTounMk5RBy8iIiIiIiIiIiIi9YXh7gE+fvYbWRlOjcX8fLk9kd+8Fcbdo+t8Ah2URBcRERERERERERGp/wIb2y+zDzstBPNoPubaTwCw3DAIw93dabGcDSXRRUREREREREREROq7Yy1dTGdWov+5GQoLIDQCOl3kvDjOkpLoIiIiIiIiIiIiIvWcEVBWiZ7ptBjMP36xxxLT1enDTc+GkugiIiIiIiIiIiIi9V1ZOxcnVqKbW34BwOjQxWkxnAsl0UVERERERERERETqu2OV6M5q52JmHYbUg2CxwPmxTonhXCmJLiIiIiIiIiIiIlLPGY7Bok6qRD+0334Z2gTDy9s5MZwjJdFFRERERERERERE6jsnt3Mxk48l0SOaOeX4VaEkuoiIiIiIiIiIiEh91zjUfpmZjllSUvvHTz4AgBGuJLqIiIiIiIiIiIiI1DUBQeDuATYbZKbX+uHNY0l0VaKLiIiIiIiIiIiISJ1jWCwQEm6/kXao9gNIUSW6iIiIiIiIiIiIiNRloREAmKnJtXpYs6gQMtLsN5o0r9VjVwcl0UVEREREREREREQaAONYEp302k2ic2APmCb4+tv/uRgl0UVEREREREREREQagrJK9LRarkTfvcN+pVVbDMOo1WNXByXRRURERERERERERBoARyV6LSfR2Z1oP36rdrV73GqiJLqIiIiIiIiIiIhIQxBxrB/5wX2YR/Nr7bBmWRL9vLa1dszqpCS6iIiIiIiIiIiISANghDWBiGZQWoL52w+1ckzzaD4c2m+/0UpJdBERERERERERERGpw4wulwBg/vR1rRzP/H4DmDYIb4YRGFwrx6xuSqKLiIiIiIiIiIiINBBG1x4AmD9/TeGfv9fosUzTxPxylf24l11Vo8eqSUqii4iIiIiIiIiIiDQU57XFuOgyKC0l/elR2BKWYO7Yipmfh2ma1XYYs7AAc8lbsGcHWK0YPa6stueubVZnByAiIiIiIiIiIiIitcMwDBh0H2bKAWx7k+D9d44/aHUH/0Dw9gF3D/BoBB6NMDwagYeH/XHDAIsFDIv9svz14iLIy8U8nGpPnhcV2Y/5f8Mx/Pyds+BqoCS6iIiIiIiIiIiISANiePvi9tg0/Dd/S9amLzB3boPcbCgphow0+79yzrk+PTQC47pbsVxyRZVjdiYl0UVEREREREREREQaGMNqxfeam8jtGmfvXV5YCDmZkJMFhUehqBCzqAiKCo//Ky0Fm80+KNRW7l/ZbXcP8PGDwMYYzVtD0xb2yncXpyS6iIiIiIiIiIiISANnNGoEoRH2f2X3OTGeukSDRUVERERERERERM5RcXEx48aN4+abb2b37t3ODkdEaoCS6CIiIiIiIiIiIudowYIFNG7c2NlhiEgNUhJdRERERERERETkHPz8889s3ryZwYMHOzsUEalB6okuIiIiIiIiIiJylrKyspg7dy7jxo3Dw8OjUvsUFxdTXFzsuG0YBl5eXo7rp1P2mKsPaNQ66hato/KURBcRERERERERETkLpmny6quv0rdvX9q0aUNqamql9lu+fDlLly513G7dujWTJ08mNDS0UvtHRET89UYuQOuoW7SOv6YkuoiIiIiIiIiICLB48eIKSe5TmTRpEn/++SdHjx5l4MCBZ/X8AwcOZMCAAY7bZZWzaWlplJSUnHY/wzCIiIggOTkZ0zTP6ph1idZRtzSkdVit1kp/WHXK/c95TxdntdbfpdfntUnN0/kjVaHzR6pC549Uhc4fqSqdQ1IVOn+kKurD+VMf1lCmX79+xMXFnXGb0NBQli1bxvbt27ntttsqPPbII4/Qs2dPHnjggVPu6+7ujru7+0n3V/a/oZubW6W2q+u0jrqlIayjqj+nDNOVP2YQERERERERERGpZenp6eTn5ztuZ2Zm8vzzzzN69GjatWtHcHCwE6MTkepmcXYAUn2OHj3Kv/71L44ePersUMQF6fyRqtD5I1Wh80eqQuePVJXOIakKnT9SFTp/XFtISAgtW7Z0/GvSpAlg78lcEwn0+nK+aB11i9ZReUqi1yOmabJr1y6X7mEkzqPzR6pC549Uhc4fqQqdP1JVOoekKnT+SFXo/JGzUV/OF62jbtE6Kq/+NK0SERERERERERFxgrCwMBYvXuzsMESkhqgSXURERERERERERETkNJREr0fc3d256aabTjnlWeSv6PyRqtD5I1Wh80eqQuePVJXOIakKnT9SFTp/5GzUl/NF66hbtI7KM0xXb3ojIiIiIiIiIiIiIlJDVIkuIiIiIiIiIiIiInIaSqKLiIiIiIiIiIiIiJyGkugiIiIiIiIiIiIiIqdhdXYAUj1WrVrFihUryMrKonnz5gwdOpTo6GhnhyUuYPny5Xz33XccOHAADw8PoqKiGDRoEE2bNnV2aOJili9fznvvvUf//v0ZOnSos8MRF5GRkcGCBQv45ZdfKCoqokmTJtx3331ERkY6OzSp40pLS1myZAkbNmwgKyuLoKAgevfuzY033ojFojoRqWjLli2sWLGCXbt2kZmZydixY+nevbvjcdM0WbJkCWvWrOHIkSO0a9eOu+++mxYtWjgxaqkrznT+lJSU8L///Y+ff/6Z1NRUvL29iY2N5bbbbqNx48ZOjlzqir/6GVTea6+9xurVq7njjju45pprajlSqatcLeezePFili5dWuG+gIAAXn/9daDuvu9Wx+8LxcXFzJ8/n6+++oqioiJiYmIYNmwYwcHBdWYds2fPZv369RX2adeuHc8//3ydWkdl8lW1+ZroL4x6YNOmTcybN+c/U98AAAvzSURBVI8bb7yRyZMnEx0dzb///W/S09OdHZq4gC1btnD11Vfz/PPP88QTT2Cz2XjuuecoKChwdmjiQnbs2MHq1as577zznB2KuJAjR44wYcIErFYrjz32GNOnT2fIkCF4e3s7OzRxAR9++CGff/45d999Ny+99BKDBg1ixYoVrFy50tmhSR1UWFhIq1atuOuuu075+Icffsgnn3zCXXfdxaRJkwgMDOS5557j6NGjtRyp1EVnOn+KiorYtWsX//jHP5g8eTJjxozh0KFDTJkyxQmRSl31Vz+Dynz33XckJiYSFBRUS5GJK3DVnE+LFi147bXXHP+mTZvmeKyuvu9Wx+8L8+bN47vvvmPUqFE8++yzFBQU8MILL2Cz2WprGZX6mdO5c+cKr8+jjz5a4fG6sI7K5Ktq8zVREr0e+Pjjj+nTpw9XXnml4xPJkJAQPvvsM2eHJi7g8ccfp3fv3rRo0YJWrVpx//33k56eTlJSkrNDExdRUFDArFmzuPfee/Hx8XF2OOJCPvzwQ4KDg7n//vtp27YtYWFhxMbGEhER4ezQxAVs376dCy+8kK5duxIWFsYll1xCp06d2Llzp7NDkzqoS5cu3HLLLVx88cUnPWaaJgkJCQwcOJCLL76Yli1bMnLkSAoLC9m4caMTopW65kznj7e3NxMmTKBHjx40bdqUqKgo7rzzTpKSkup8gktqz5nOoTIZGRm89dZbPPjgg1itahogx7lqzsdisRAYGOj45+/vD9Tt992q/r6Qn5/P2rVrGTJkCJ06daJ169bEx8ezd+9eNm/eXCfWUcZqtVZ4fXx9fR2P1ZV1/FW+qrZfEyXRXVxJSQlJSUlccMEFFe7v1KkTf/75p5OiEleWn58PUOEHqMiZvPHGG3Tp0oVOnTo5OxRxMT/88AORkZFMnz6dYcOGMX78eFavXu3ssMRFtG/fnt9//52DBw8CsHv3bv7880+6dOni5MjE1aSmppKVlVXh92l3d3c6dOig36flnOTn52MYhr5ZJZVms9mYNWsW1113ndPbWUjd4so5n+TkZO69915GjhzJjBkzSElJAVz3fbcycSclJVFaWlrhb+PGjRvTsmVLtm/fXusxn8mWLVsYNmwYo0aNYs6cOWRnZzseq6vrODFfVduviT7edHE5OTnYbDYCAgIq3B8QEEBWVpZzghKXZZom//3vf2nfvj0tW7Z0djjiAr766it27drFpEmTnB2KuKDU1FQ+//xzrrnmGgYOHMiOHTt4++23cXd3p1evXs4OT+q466+/nvz8fB5++GEsFgs2m41bbrmFnj17Ojs0cTFlvzOf6vdpVRLL2SoqKuLdd98lLi5OSXSptA8//BA3Nzf+/ve/OzsUqWNcNefTrl07Ro4cSdOmTcnKyuL999/niSeeYPr06S77vluZuLOysrBarScVJda116tLly5ceumlhISEkJqayqJFi3j22Wd54YUXcHd3r5PrOFW+qrZfEyXR6wnDMCp1n8iZvPnmm+zdu5dnn33W2aGIC0hPT2fevHk8/vjjeHh4ODsccUE2m402bdpw2223AdC6dWv27dvHZ599piS6/KVNmzaxYcMGHnzwQVq0aMHu3buZN2+eY8CoyNk68Xdn0zSdFIm4qpKSEmbMmIFpmgwbNszZ4YiLSEpKIiEhgcmTJ+tveDktV8v5lP9mYMuWLYmKiiI+Pp7169fTrl07wHXfd88l7rq2th49ejiut2zZkjZt2nD//ffz008/nbEFjDPXcaZ8VW29Jkqiuzh/f38sFstJn55kZ2ef9EmMyJm89dZb/PjjjzzzzDO1Om1ZXFdSUhLZ2dk88sgjjvtsNhtbt25l5cqVvPvuu1gs6hompxcUFETz5s0r3Ne8eXO+/fZbJ0UkrmTBggVcf/31xMXFAfY/ANLS0vjggw+URJezEhgYCNgrlcoP88vJydHv01JpJSUlvPTSS6SlpfHkk0+qCl0qbevWreTk5HD//fc77rPZbLzzzjskJCQwe/ZsJ0YnzlZfcj6enp60bNmSQ4cOcdFFFwGu975bmd8XAgMDKSkp4ciRIxUqn3Nycjj//PNrNd6zERQURGhoKIcOHQLq3jpOl6+q7ddE2Q0XZ7VaiYyMPKkZ/ubNm+v0/6BSd5imyZtvvsm3337Lk08+SVhYmLNDEhcRGxvLiy++yJQpUxz/2rRpQ8+ePZkyZYoS6PKXzj//fEc/6zIHDx4kNDTUSRGJKyksLDzp54zFYqlzlT5S94WFhREYGFjh9+mSkhK2bNmi36elUsoS6MnJyUyYMAE/Pz9nhyQu5PLLL2fq1KkVfqcOCgriuuuu4/HHH3d2eOJk9SXnU1xczIEDBwgKCnLZ993KxB0ZGYmbm1uFbTIzM9m7dy9RUVG1HnNl5ebmcvjwYUciuq6s46/yVbX9mqgSvR4YMGAAs2bNIjIykqioKFavXk16ejp9+/Z1dmjiAt588002btzI+PHj8fLycnzC7e3trRYdckZeXl4n9c5v1KgRfn5+6qkvlXLNNdcwYcIE3n//fXr06MGOHTtYs2YN99xzj7NDExfQrVs33n//fUJCQmjevDm7d+/m448/5oorrnB2aFIHFRQUkJyc7LidmprK7t278fX1JSQkhP79+7N8+XKaNGlCREQEy5cvp1GjRuqxL8CZz5+goCCmT5/Orl27+Ne//oXNZnP8Pu3r64vVqj+55a9/Bp34wYvVaiUwMJCmTZvWdqhSB7lizuedd97hwgsvJCQkhOzsbJYtW8bRo0fp1asXhmHU2ffdqv6+4O3tTZ8+fZg/fz5+fn74+voyf/58WrZsWWGwpTPX4evry+LFi7nkkksIDAwkLS2N9957Dz8/P7p3716n1vFX+arKnEvVuRbDVLlOvbBq1SpWrFhBZmYmLVq04I477qBDhw7ODktcwM0333zK+++//359HV7O2tNPP02rVq0YOnSos0MRF/Hjjz/y7rvvkpycTFhYGNdccw1/+9vfnB2WuICjR4+yaNEivvvuO7Kzs2ncuDFxcXHcdNNNSlrJSf744w+eeeaZk+7v1asXI0eOxDRNlixZwurVq8nLy6Nt27bcfffd+lBYgDOfP//85z954IEHTrnfU089RceOHWs6PHEBf/Uz6EQjR46kf//+XHPNNbURnrgAV8v5zJgxw9GqyN/fn3bt2nHLLbc4WjnW1ffd6vh9oaioiAULFrBx40aKioqIiYlh2LBhhISE1Il1DB/+/+3cIUssYQCF4XP1sn3jBvEHCGaxqE1sJpNJFi2LCGK2GwQREQwGsRnFZrKJVZMgmA0irIjg7G2C4YObnIF5njjpDFNmXj6mn729vTw9PWU4HKbb7WZqaiorKys/NjbhPv6nV/3mMxHRAQAAAACgwA9rAQAAAACgQEQHAAAAAIACER0AAAAAAApEdAAAAAAAKBDRAQAAAACgQEQHAAAAAIACER0AAAAAAApEdAAAAAAAKBDRAQAAAACgQEQHAAAAAIACER0AAAAAAApEdACAhvj8/MzOzk4Gg0He39+/r7++vqbf72d3dzdVVdW4EAAAoH1EdACAhuh0Otna2srb21uOjo6SJFVV5eDgIEmyubmZsTGvbwAAAL/JVxgAQIP0er2sr6/n9vY2V1dXubi4yP39fQaDQbrdbt3zAAAAWudv3QMAAPhpdnY2Dw8POTs7S1VVWV5ezvT0dN2zAAAAWslJdACABlpYWMjX11fGx8eztLRU9xwAAIDWEtEBABrm4+Mjh4eH6fV66XQ6OT4+rnsSAABAa4noAAANc3JykpeXl2xvb2djYyN3d3e5vLysexYAAEAriegAAA1yfX2dm5ubrK2tZWJiIjMzM1lcXMz5+XkeHx/rngcAANA6IjoAQEM8Pz/n9PQ0c3NzmZ+f/76+urqaycnJ7O/vZzgc1jcQAACghf6MRqNR3SMAAAAAAKCJnEQHAAAAAIACER0AAAAAAApEdAAAAAAAKBDRAQAAAACgQEQHAAAAAIACER0AAAAAAApEdAAAAAAAKBDRAQAAAACgQEQHAAAAAIACER0AAAAAAApEdAAAAAAAKBDRAQAAAACg4B9gEIniBsbiIwAAAABJRU5ErkJggg=="
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# plot trajectory\n",
|
|
"grid = plt.GridSpec(4, 5)\n",
|
|
"\n",
|
|
"plt.figure(figsize=(15, 10))\n",
|
|
"\n",
|
|
"plt.subplot(grid[0:4, 0:4])\n",
|
|
"plt.plot(track[0, :], track[1, :], \"b+\")\n",
|
|
"plt.plot(x_sim[0, :], x_sim[1, :])\n",
|
|
"plt.axis(\"equal\")\n",
|
|
"plt.ylabel(\"y\")\n",
|
|
"plt.xlabel(\"x\")\n",
|
|
"\n",
|
|
"plt.subplot(grid[0, 4])\n",
|
|
"plt.plot(u_sim[0, :])\n",
|
|
"plt.ylabel(\"a(t) [m/ss]\")\n",
|
|
"\n",
|
|
"plt.subplot(grid[1, 4])\n",
|
|
"plt.plot(x_sim[2, :])\n",
|
|
"plt.ylabel(\"v(t) [m/s]\")\n",
|
|
"\n",
|
|
"plt.subplot(grid[2, 4])\n",
|
|
"plt.plot(np.degrees(u_sim[1, :]))\n",
|
|
"plt.ylabel(\"delta(t) [rad]\")\n",
|
|
"\n",
|
|
"plt.subplot(grid[3, 4])\n",
|
|
"plt.plot(x_sim[3, :])\n",
|
|
"plt.ylabel(\"theta(t) [rad]\")\n",
|
|
"\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"language": "python",
|
|
"display_name": "Python 3 (ipykernel)"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|