Minor folder structure arranging

master
mcarfagno 2019-12-17 10:37:32 +00:00
parent 5d99fa0757
commit 60f028e25b
11 changed files with 617 additions and 19 deletions

208
husky_mpc/CMakeLists.txt Normal file
View File

@ -0,0 +1,208 @@
cmake_minimum_required(VERSION 2.8.3)
project(husky_mpc)
## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
geometry_msgs
nav_msgs
roscpp
rospy
std_msgs
)
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend tag for "message_generation"
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
## but can be declared for certainty nonetheless:
## * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# geometry_msgs# navigation_msgs# std_msgs
# )
################################################
## Declare ROS dynamic reconfigure parameters ##
################################################
## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
## * add "dynamic_reconfigure" to
## find_package(catkin REQUIRED COMPONENTS ...)
## * uncomment the "generate_dynamic_reconfigure_options" section below
## and list every .cfg file to be processed
## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
# cfg/DynReconf1.cfg
# cfg/DynReconf2.cfg
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
# INCLUDE_DIRS include
# LIBRARIES husky_mpc
# CATKIN_DEPENDS geometry_msgs navigation_msgs roscpp rospy std_msgs
# DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
## Declare a C++ library
# add_library(${PROJECT_NAME}
# src/${PROJECT_NAME}/husky_mpc.cpp
# )
## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
# add_executable(${PROJECT_NAME}_node src/husky_mpc_node.cpp)
## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
# ${catkin_LIBRARIES}
# )
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# install(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_husky_mpc.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

74
husky_mpc/package.xml Normal file
View File

@ -0,0 +1,74 @@
<?xml version="1.0"?>
<package format="2">
<name>husky_mpc</name>
<version>0.0.0</version>
<description>The husky_mpc package</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="marcello@todo.todo">marcello</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>TODO</license>
<!-- Url tags are optional, but multiple are allowed, one per tag -->
<!-- Optional attribute type can be: website, bugtracker, or repository -->
<!-- Example: -->
<!-- <url type="website">http://wiki.ros.org/husky_mpc</url> -->
<!-- Author tags are optional, multiple are allowed, one per tag -->
<!-- Authors do not have to be maintainers, but could be -->
<!-- Example: -->
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
<!-- The *depend tags are used to specify dependencies -->
<!-- Dependencies can be catkin packages or system dependencies -->
<!-- Examples: -->
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
<!-- <depend>roscpp</depend> -->
<!-- Note that this is equivalent to the following: -->
<!-- <build_depend>roscpp</build_depend> -->
<!-- <exec_depend>roscpp</exec_depend> -->
<!-- Use build_depend for packages you need at compile time: -->
<!-- <build_depend>message_generation</build_depend> -->
<!-- Use build_export_depend for packages you need in order to build against this package: -->
<!-- <build_export_depend>message_generation</build_export_depend> -->
<!-- Use buildtool_depend for build tool packages: -->
<!-- <buildtool_depend>catkin</buildtool_depend> -->
<!-- Use exec_depend for packages you need at runtime: -->
<!-- <exec_depend>message_runtime</exec_depend> -->
<!-- Use test_depend for packages you need only for testing: -->
<!-- <test_depend>gtest</test_depend> -->
<!-- Use doc_depend for packages you need only for building documentation: -->
<!-- <doc_depend>doxygen</doc_depend> -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>geometry_msgs</build_depend>
<build_depend>nav_msgs</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_export_depend>geometry_msgs</build_export_depend>
<build_export_depend>nav_msgs</build_export_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<exec_depend>geometry_msgs</exec_depend>
<exec_depend>nav_msgs</exec_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>

176
husky_mpc/scripts/cvxpy_mpc.py Executable file
View File

@ -0,0 +1,176 @@
import numpy as np
from scipy.integrate import odeint
from scipy.interpolate import interp1d
import cvxpy as cp
def get_linear_model(x_bar,u_bar):
"""
"""
# Control problem statement.
N = 5 #number of state variables
M = 2 #number of control variables
T = 20 #Prediction Horizon
dt = 0.25 #discretization step
x = x_bar[0]
y = x_bar[1]
theta = x_bar[2]
psi = x_bar[3]
cte = x_bar[4]
v = u_bar[0]
w = u_bar[1]
A = np.zeros((N,N))
A[0,2]=-v*np.sin(theta)
A[1,2]=v*np.cos(theta)
A[4,3]=v*np.cos(-psi)
A_lin=np.eye(N)+dt*A
B = np.zeros((N,M))
B[0,0]=np.cos(theta)
B[1,0]=np.sin(theta)
B[2,1]=1
B[3,1]=-1
B[4,0]=np.sin(-psi)
B_lin=dt*B
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w,-w,v*np.sin(-psi)]).reshape(N,1)
C_lin = dt*(f_xu - np.dot(A,x_bar.reshape(N,1)) - np.dot(B,u_bar.reshape(M,1)))
return A_lin,B_lin,C_lin
def calc_err(state,path):
"""
Finds psi and cte w.r.t. the closest waypoint.
:param state: array_like, state of the vehicle [x_pos, y_pos, theta]
:param path: array_like, reference path ((x1, x2, ...), (y1, y2, ...), (th1 ,th2, ...)]
:returns: (float,float)
"""
dx = state[0]-path[0,:]
dy = state[1]-path[1,:]
dist = np.sqrt(dx**2 + dy**2)
nn_idx = np.argmin(dist)
try:
v = [path[0,nn_idx+1] - path[0,nn_idx],
path[1,nn_idx+1] - path[1,nn_idx]]
v /= np.linalg.norm(v)
d = [path[0,nn_idx] - state[0],
path[1,nn_idx] - state[1]]
if np.dot(d,v) > 0:
target_idx = nn_idx
else:
target_idx = nn_idx+1
except IndexError as e:
target_idx = nn_idx
path_ref_vect = [np.cos(path[2,target_idx] + np.pi / 2),
np.sin(path[2,target_idx] + np.pi / 2)]
#heading error w.r.t path frame
psi = path[2,target_idx] - state[2]
# the cross-track error is given by the scalar projection of the car->wp vector onto the faxle versor
#cte = np.dot([dx[target_idx], dy[target_idx]],front_axle_vect)
cte = np.dot([dx[target_idx], dy[target_idx]],path_ref_vect)
return target_idx,psi,cte
def optimize(starting_state,u_bar,track);
'''
:param starting_state:
:param u_bar:
:param track:
:returns:
'''
MAX_SPEED = 1.25
MIN_SPEED = 0.75
MAX_STEER_SPEED = 1.57/2
N = 5 #number of state variables
M = 2 #number of control variables
T = 20 #Prediction Horizon
dt = 0.25 #discretization step
#Starting Condition
x0 = np.zeros(N)
x0[0] = starting_state[0]
x0[1] = starting_state[1]
x0[2] = starting_state[2]
_,psi,cte = calc_err(x0,track)
x0[3]=psi
x0[4]=cte
# Prediction
x_bar=np.zeros((N,T+1))
x_bar[:,0]=x0
for t in range (1,T+1):
xt=x_bar[:,t-1].reshape(5,1)
ut=u_bar[:,t-1].reshape(2,1)
A,B,C=get_linear_model(xt,ut)
xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)
_,psi,cte = calc_err(xt_plus_one,track)
xt_plus_one[3]=psi
xt_plus_one[4]=cte
x_bar[:,t]= xt_plus_one
#CVXPY Linear MPC problem statement
cost = 0
constr = []
x = cp.Variable((N, T+1))
u = cp.Variable((M, T))
for t in range(T):
# Tracking
if t > 0:
idx,_,_ = calc_err(x_bar[:,t],track)
delta_x = track[:,idx]-x[0:3,t]
cost+= cp.quad_form(delta_x,10*np.eye(3))
# Tracking last time step
if t == T:
idx,_,_ = calc_err(x_bar[:,t],track)
delta_x = track[:,idx]-x[0:3,t]
cost+= cp.quad_form(delta_x,100*np.eye(3))
# Actuation rate of change
if t < (T - 1):
cost += cp.quad_form(u[:, t + 1] - u[:, t], 25*np.eye(M))
# Actuation effort
cost += cp.quad_form( u[:, t],1*np.eye(M))
# Constrains
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
constr += [x[:,t+1] == A*x[:,t] + B*u[:,t] + C.flatten()]
# sums problem objectives and concatenates constraints.
constr += [x[:,0] == x_sim[:,sim_time]] # starting condition
constr += [u[0, :] <= MAX_SPEED]
constr += [u[0, :] >= MIN_SPEED]
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
# Solve
prob = cp.Problem(cp.Minimize(cost), constr)
solution = prob.solve(solver=cp.ECOS, verbose=False)
#retrieved optimized U and assign to u_bar to linearize in next step
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
(np.array(u.value[1, :]).flatten())))
return u_bar

84
husky_mpc/scripts/mpc_node.py Executable file
View File

@ -0,0 +1,84 @@
#! /usr/bin/env python
import rospy
import numpy as np
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Twist
from utils import compute_path_from_wp
from cvxpy_mpc import optimize
# classes
class Node():
def __init__(self):
rospy.init_node('mpc_node')
N = 5 #number of state variables
M = 2 #number of control variables
T = 20 #Prediction Horizon
dt = 0.25 #discretization step
# State for the robot mathematical model
self.state = None
# starting guess output
self.opt_u = np.zeros((M,T))
self.opt_u[0,:] = 1 #m/s
self.opt_u[1,:] = np.radians(0) #rad/s
# Interpolated Path to follow given waypoints
self.path = compute_path_from_wp([0,20,30,30],[0,0,10,20])
self._cmd_pub = rospy.Publisher(rospy.get_namespace() + 'husky_velocity_controller/cmd_vel', Twist, queue_size=10)
self._odom_sub = rospy.Subscriber(rospy.get_namespace() +'husky_velocity_controller/odom', Odometry, self._odom_cb, queue_size=1)
def run(self):
while 1:
if self.state is not None:
#optimization loop
self.opt_u = optimize(self.state,
self.opt_u,
self.path)
msg = Twist()
msg.linear.x=self.opt_u[0,1]
msg.angular.z=self.opt_u[0,1]
self._cmd_pub(msg)
def _odom_cb(self,odom):
'''
Updates state with latest odometry.
:param odom: nav_msgs.msg.Odometry
'''
state = np.zeros(3)
# Update current position
state[0] = odom.pose.pose.position.x
state[1] = odom.pose.pose.position.y
# Update current orientation
_, _, state[2] = euler_from_quaternion(
[odom.pose.pose.orientation.x,
odom.pose.pose.orientation.y,
odom.pose.pose.orientation.z,
odom.pose.pose.orientation.w])
self.state = state
def main():
ros_node=Node()
try:
ros_node.run()
except rospy.exceptions.ROSException as e:
sys.exit(e)
if __name__ == '__main__':
main()

33
husky_mpc/scripts/utils.py Executable file
View File

@ -0,0 +1,33 @@
import numpy as np
from scipy.integrate import odeint
from scipy.interpolate import interp1d
import cvxpy as cp
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
"""
Interpolation range is computed to assure one point every fixed distance step [m].
:param start_xp: array_like, list of starting x coordinates
:param start_yp: array_like, list of starting y coordinates
:param step: float, interpolation distance [m] between consecutive waypoints
:returns: array_like, of shape (3,N)
"""
final_xp=[]
final_yp=[]
delta = step #[m]
for idx in range(len(start_xp)-1):
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
interp_range = np.linspace(0,1,section_len/delta)
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
final_xp=np.append(final_xp,fx(interp_range))
final_yp=np.append(final_yp,fy(interp_range))
dx = np.append(0, np.diff(final_xp))
dy = np.append(0, np.diff(final_yp))
theta = np.arctan2(dy, dx)

BIN
husky_mpc/scripts/utils.pyc Normal file

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

Before

Width:  |  Height:  |  Size: 38 KiB

After

Width:  |  Height:  |  Size: 38 KiB

View File

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB