mpc_python_learn/mpc_demo/cvxpy_mpc.py

105 lines
2.7 KiB
Python
Raw Normal View History

2019-12-17 18:37:32 +08:00
import numpy as np
2020-03-04 20:32:29 +08:00
np.seterr(divide='ignore', invalid='ignore')
2019-12-17 18:37:32 +08:00
from scipy.integrate import odeint
from scipy.interpolate import interp1d
import cvxpy as cp
2020-07-01 00:21:27 +08:00
from utils import road_curve, f, df
from mpc_config import Params
P=Params()
2019-12-17 18:37:32 +08:00
def get_linear_model(x_bar,u_bar):
"""
"""
x = x_bar[0]
y = x_bar[1]
theta = x_bar[2]
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
v = u_bar[0]
w = u_bar[1]
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
A = np.zeros((P.N,P.N))
2019-12-17 18:37:32 +08:00
A[0,2]=-v*np.sin(theta)
A[1,2]=v*np.cos(theta)
2020-07-01 00:21:27 +08:00
A_lin=np.eye(P.N)+P.dt*A
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
B = np.zeros((P.N,P.M))
2019-12-17 18:37:32 +08:00
B[0,0]=np.cos(theta)
B[1,0]=np.sin(theta)
B[2,1]=1
2020-07-01 00:21:27 +08:00
B_lin=P.dt*B
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w]).reshape(P.N,1)
C_lin = P.dt*(f_xu - np.dot(A,x_bar.reshape(P.N,1)) - np.dot(B,u_bar.reshape(P.M,1)))
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
return A_lin,B_lin,C_lin
2020-07-01 00:21:27 +08:00
def optimize(state,u_bar,track):
2019-12-17 18:37:32 +08:00
'''
2020-07-01 00:21:27 +08:00
:param state:
2019-12-17 18:37:32 +08:00
:param u_bar:
:param track:
:returns:
'''
MAX_SPEED = 1.25
MIN_SPEED = 0.75
MAX_STEER_SPEED = 1.57/2
2020-07-01 00:21:27 +08:00
# compute polynomial coefficients of the track
K=road_curve(state,track)
2019-12-17 18:37:32 +08:00
2020-07-01 00:21:27 +08:00
# dynamics starting state w.r.t vehicle frame
x_bar=np.zeros((P.N,P.T+1))
2019-12-17 18:37:32 +08:00
2020-07-01 00:21:27 +08:00
#prediction for linearization of costrains
for t in range (1,P.T+1):
xt=x_bar[:,t-1].reshape(P.N,1)
ut=u_bar[:,t-1].reshape(P.M,1)
2019-12-17 18:37:32 +08:00
A,B,C=get_linear_model(xt,ut)
xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)
x_bar[:,t]= xt_plus_one
#CVXPY Linear MPC problem statement
cost = 0
constr = []
2020-07-01 00:21:27 +08:00
x = cp.Variable((P.N, P.T+1))
u = cp.Variable((P.M, P.T))
2019-12-17 18:37:32 +08:00
2020-07-01 00:21:27 +08:00
for t in range(P.T):
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
#cost += 30*cp.sum_squares(x[2,t]-np.arctan(df(x_bar[0,t],K))) # psi
cost += 50*cp.sum_squares(x[2,t]-np.arctan2(df(x_bar[0,t],K),x_bar[0,t])) # psi
cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
2019-12-17 18:37:32 +08:00
# Actuation rate of change
2020-07-01 00:21:27 +08:00
if t < (P.T - 1):
cost += cp.quad_form(u[:, t + 1] - u[:, t], 100*np.eye(P.M))
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
# Actuation effort
2020-07-01 00:21:27 +08:00
cost += cp.quad_form( u[:, t],1*np.eye(P.M))
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
# Kinrmatics Constrains (Linearized model)
2019-12-17 18:37:32 +08:00
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
2020-07-01 00:21:27 +08:00
constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]
2019-12-17 18:37:32 +08:00
# sums problem objectives and concatenates constraints.
2020-07-01 00:21:27 +08:00
constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition
2019-12-17 18:37:32 +08:00
constr += [u[0, :] <= MAX_SPEED]
constr += [u[0, :] >= MIN_SPEED]
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
# Solve
prob = cp.Problem(cp.Minimize(cost), constr)
2020-07-01 00:21:27 +08:00
solution = prob.solve(solver=cp.OSQP, verbose=False)
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
#retrieved optimized U and assign to u_bar to linearize in next step
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
(np.array(u.value[1, :]).flatten())))
2020-01-13 20:25:26 +08:00
return u_bar