mpc_python_learn/mpc_pybullet_demo/mpcpy/cvxpy_mpc.py

142 lines
3.5 KiB
Python
Raw Normal View History

2019-12-17 18:37:32 +08:00
import numpy as np
2022-07-22 23:07:47 +08:00
np.seterr(divide="ignore", invalid="ignore")
2020-03-04 20:32:29 +08:00
2019-12-17 18:37:32 +08:00
from scipy.integrate import odeint
from scipy.interpolate import interp1d
import cvxpy as opt
2019-12-17 18:37:32 +08:00
2021-07-08 19:54:48 +08:00
from .utils import *
2020-07-01 00:21:27 +08:00
2021-07-08 19:54:48 +08:00
from .mpc_config import Params
2020-07-01 00:21:27 +08:00
2022-07-22 23:07:47 +08:00
P = Params()
def get_linear_model_matrices(x_bar, u_bar):
2019-12-17 18:37:32 +08:00
"""
Computes the LTI approximated state space model x' = Ax + Bu + C
2019-12-17 18:37:32 +08:00
"""
2022-07-22 23:07:47 +08:00
2019-12-17 18:37:32 +08:00
x = x_bar[0]
y = x_bar[1]
2020-07-01 22:59:13 +08:00
v = x_bar[2]
theta = x_bar[3]
2022-07-22 23:07:47 +08:00
2020-07-01 22:59:13 +08:00
a = u_bar[0]
delta = u_bar[1]
2022-07-22 23:07:47 +08:00
ct = np.cos(theta)
st = np.sin(theta)
cd = np.cos(delta)
td = np.tan(delta)
2022-07-22 23:07:47 +08:00
A = np.zeros((P.N, P.N))
A[0, 2] = ct
A[0, 3] = -v * st
A[1, 2] = st
A[1, 3] = v * ct
A[3, 2] = v * td / P.L
A_lin = np.eye(P.N) + P.DT * A
B = np.zeros((P.N, P.M))
B[2, 0] = 1
B[3, 1] = v / (P.L * cd**2)
B_lin = P.DT * B
f_xu = np.array([v * ct, v * st, a, v * td / P.L]).reshape(P.N, 1)
C_lin = (
P.DT
* (
f_xu - np.dot(A, x_bar.reshape(P.N, 1)) - np.dot(B, u_bar.reshape(P.M, 1))
).flatten()
)
# return np.round(A_lin,6), np.round(B_lin,6), np.round(C_lin,6)
return A_lin, B_lin, C_lin
2019-12-17 18:37:32 +08:00
2022-07-22 23:07:47 +08:00
class MPC:
def __init__(self, N, M, Q, R):
2022-07-22 23:07:47 +08:00
""" """
self.state_len = N
self.action_len = M
self.state_cost = Q
self.action_cost = R
2022-07-22 23:07:47 +08:00
def optimize_linearized_model(
self,
A,
B,
C,
initial_state,
target,
time_horizon=10,
Q=None,
R=None,
verbose=False,
):
"""
Optimisation problem defined for the linearised model,
2022-07-22 23:07:47 +08:00
:param A:
:param B:
2022-07-22 23:07:47 +08:00
:param C:
:param initial_state:
:param Q:
:param R:
:param target:
:param time_horizon:
:param verbose:
:return:
"""
2022-07-22 23:07:47 +08:00
assert len(initial_state) == self.state_len
2022-07-22 23:07:47 +08:00
if Q == None or R == None:
Q = self.state_cost
R = self.action_cost
2022-07-22 23:07:47 +08:00
# Create variables
2022-07-22 23:07:47 +08:00
x = opt.Variable((self.state_len, time_horizon + 1), name="states")
u = opt.Variable((self.action_len, time_horizon), name="actions")
# Loop through the entire time_horizon and append costs
cost_function = []
for t in range(time_horizon):
2022-07-22 23:07:47 +08:00
_cost = opt.quad_form(target[:, t + 1] - x[:, t + 1], Q) + opt.quad_form(
u[:, t], R
)
_constraints = [
x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C,
u[0, t] >= -P.MAX_ACC,
u[0, t] <= P.MAX_ACC,
u[1, t] >= -P.MAX_STEER,
u[1, t] <= P.MAX_STEER,
]
# opt.norm(target[:, t + 1] - x[:, t + 1], 1) <= 0.1]
# Actuation rate of change
if t < (time_horizon - 1):
2022-07-22 23:07:47 +08:00
_cost += opt.quad_form(u[:, t + 1] - u[:, t], R * 1)
_constraints += [opt.abs(u[0, t + 1] - u[0, t]) / P.DT <= P.MAX_D_ACC]
_constraints += [opt.abs(u[1, t + 1] - u[1, t]) / P.DT <= P.MAX_D_STEER]
if t == 0:
2022-07-22 23:07:47 +08:00
# _constraints += [opt.norm(target[:, time_horizon] - x[:, time_horizon], 1) <= 0.01,
# x[:, 0] == initial_state]
_constraints += [x[:, 0] == initial_state]
2022-07-22 23:07:47 +08:00
cost_function.append(
opt.Problem(opt.Minimize(_cost), constraints=_constraints)
)
# Add final cost
problem = sum(cost_function)
2022-07-22 23:07:47 +08:00
# Minimize Problem
problem.solve(verbose=verbose, solver=opt.OSQP)
return x, u