mpc_python_learn/mpc_pybullet_demo/utils.py

99 lines
2.6 KiB
Python
Raw Normal View History

2019-12-17 18:37:32 +08:00
import numpy as np
from scipy.interpolate import interp1d
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
"""
"""
final_xp=[]
final_yp=[]
delta = step #[m]
for idx in range(len(start_xp)-1):
2020-07-06 23:54:22 +08:00
section_len = np.sqrt(np.sum(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
interp_range = np.linspace(0,1, int(1+section_len/delta))
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
2020-01-13 20:25:26 +08:00
2019-12-17 18:37:32 +08:00
final_xp=np.append(final_xp,fx(interp_range))
final_yp=np.append(final_yp,fy(interp_range))
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
return np.vstack((final_xp,final_yp))
def get_nn_idx(state,path):
"""
"""
dx = state[0]-path[0,:]
dy = state[1]-path[1,:]
dist = np.sqrt(dx**2 + dy**2)
nn_idx = np.argmin(dist)
try:
v = [path[0,nn_idx+1] - path[0,nn_idx],
path[1,nn_idx+1] - path[1,nn_idx]]
v /= np.linalg.norm(v)
d = [path[0,nn_idx] - state[0],
path[1,nn_idx] - state[1]]
if np.dot(d,v) > 0:
target_idx = nn_idx
else:
target_idx = nn_idx+1
except IndexError as e:
target_idx = nn_idx
return target_idx
def road_curve(state,track):
"""
"""
POLY_RANK = 3
#given vehicle pos find lookahead waypoints
2020-07-06 23:54:22 +08:00
nn_idx=get_nn_idx(state,track)
LOOKAHED = POLY_RANK*2
lk_wp=track[:,max(0,nn_idx-1):nn_idx+LOOKAHED]
2020-07-01 00:21:27 +08:00
#trasform lookahead waypoints to vehicle ref frame
dx = lk_wp[0,:] - state[0]
dy = lk_wp[1,:] - state[1]
2020-07-01 22:59:13 +08:00
wp_vehicle_frame = np.vstack(( dx * np.cos(-state[3]) - dy * np.sin(-state[3]),
dy * np.cos(-state[3]) + dx * np.sin(-state[3]) ))
2020-07-01 00:21:27 +08:00
#fit poly
return np.polyfit(wp_vehicle_frame[0,:], wp_vehicle_frame[1,:], POLY_RANK, rcond=None, full=False, w=None, cov=False)
2020-01-13 20:25:26 +08:00
2020-07-06 23:54:22 +08:00
# def f(x,coeff):
# """
# """
# return round(coeff[0]*x**3 + coeff[1]*x**2 + coeff[2]*x**1 + coeff[3]*x**0,6)
2020-07-01 00:21:27 +08:00
# def f(x,coeff):
# return round(coeff[0]*x**5+coeff[1]*x**4+coeff[2]*x**3+coeff[3]*x**2+coeff[4]*x**1+coeff[5]*x**0,6)
2020-07-06 23:54:22 +08:00
def f(x,coeff):
y=0
j=len(coeff)
for k in range(j):
y += coeff[k]*x**(j-k-1)
return round(y,6)
# def df(x,coeff):
# """
# """
# return round(3*coeff[0]*x**2 + 2*coeff[1]*x**1 + coeff[2]*x**0,6)
2020-07-01 00:21:27 +08:00
# def df(x,coeff):
# return round(5*coeff[0]*x**4 + 4*coeff[1]*x**3 +3*coeff[2]*x**2 + 2*coeff[3]*x**1 + coeff[4]*x**0,6)
2020-07-06 23:54:22 +08:00
def df(x,coeff):
y=0
j=len(coeff)
for k in range(j-1):
y += (j-k-1)*coeff[k]*x**(j-k-2)
return round(y,6)