f10 pybullet demo
21
README.md
|
@ -4,30 +4,35 @@ Python implementation of a mpc controller for path tracking using **[CVXPY](http
|
|||
|
||||
## About
|
||||
|
||||
The MPC is a model predictive path following controller which does follow a predefined reference path Xref and Yref by solving an optimization problem. The resulting optimization problem is shown in the following equation:
|
||||
The MPC is a model predictive path following controller which does follow a predefined reference by solving an optimization problem. The resulting optimization problem is shown in the following equation:
|
||||
|
||||
![](img/quicklatex1.png)
|
||||
|
||||
The vehicle dynamics are described by the differential drive model:
|
||||
The terns of the cost function are the sum of the **cross-track error**, **heading error**, **velocity error** and **actuaction effort**.
|
||||
|
||||
Where R,P,K,Q are the cost matrices used to tune the response.
|
||||
|
||||
The vehicle model is described by the bicycle kinematics model using the state space matrices A and B:
|
||||
|
||||
![](img/quicklatex2.png)
|
||||
|
||||
The state variables of the model are:
|
||||
The state variables **(x)** of the model are:
|
||||
|
||||
* **x** coordinate of the robot
|
||||
* **y** coordinate of the robot
|
||||
* **v** velocuty of the robot
|
||||
* **theta** heading of the robot
|
||||
|
||||
The inputs of the model are:
|
||||
The inputs **(u)** of the model are:
|
||||
|
||||
* **v** linear velocity of the robot
|
||||
* **w** angular velocity of the robot
|
||||
* **a** linear acceleration of the robot
|
||||
* **delta** steering angle of the robot
|
||||
|
||||
## Demo
|
||||
|
||||
The MPC implementation is tested using **[bullet](https://pybullet.org/wordpress/)** physics simulator. Turtlebot model is from: *https://github.com/erwincoumans/pybullet_robots*.
|
||||
The MPC implementation is tested using **[bullet](https://pybullet.org/wordpress/)** physics simulator. Racing car model is from: *https://github.com/erwincoumans/pybullet_robots*.
|
||||
|
||||
![](img/Turtlebot.png)
|
||||
![](img/f10.png)
|
||||
|
||||
Results:
|
||||
|
||||
|
|
BIN
img/demo.gif
Before Width: | Height: | Size: 1.6 MiB After Width: | Height: | Size: 3.3 MiB |
After Width: | Height: | Size: 1.6 MiB |
After Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 4.1 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 1.2 KiB After Width: | Height: | Size: 2.5 KiB |
|
@ -50,8 +50,8 @@ def optimize(state,u_bar,track,ref_vel=1.):
|
|||
:returns:
|
||||
'''
|
||||
|
||||
MAX_SPEED = 1.25
|
||||
MAX_STEER = 1.57/2
|
||||
MAX_SPEED = ref_vel*1.5
|
||||
MAX_STEER = np.pi/4
|
||||
MAX_ACC = 1.0
|
||||
|
||||
# compute polynomial coefficients of the track
|
||||
|
@ -77,9 +77,9 @@ def optimize(state,u_bar,track,ref_vel=1.):
|
|||
|
||||
for t in range(P.T):
|
||||
|
||||
cost += 30*cp.sum_squares(x[3,t]-np.arctan(df(x_bar[0,t],K))) # psi
|
||||
cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
|
||||
cost += 10*cp.sum_squares(ref_vel-x[2,t]) # desired v
|
||||
cost += 20*cp.sum_squares(x[3,t]-np.clip(np.arctan(df(x_bar[0,t],K)),-np.pi,np.pi) ) # psi
|
||||
cost += 40*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte
|
||||
cost += 20*cp.sum_squares(ref_vel-x[2,t]) # desired v
|
||||
|
||||
# Actuation rate of change
|
||||
if t < (P.T - 1):
|
||||
|
@ -101,10 +101,14 @@ def optimize(state,u_bar,track,ref_vel=1.):
|
|||
|
||||
# Solve
|
||||
prob = cp.Problem(cp.Minimize(cost), constr)
|
||||
solution = prob.solve(solver=cp.OSQP, verbose=False)
|
||||
prob.solve(solver=cp.OSQP, verbose=False)
|
||||
|
||||
if "optimal" not in prob.status:
|
||||
print("WARN: No optimal solution")
|
||||
return u_bar
|
||||
|
||||
#retrieved optimized U and assign to u_bar to linearize in next step
|
||||
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
|
||||
u_opt=np.vstack((np.array(u.value[0, :]).flatten(),
|
||||
(np.array(u.value[1, :]).flatten())))
|
||||
|
||||
return u_bar
|
||||
return u_opt
|
||||
|
|
|
@ -34,8 +34,8 @@ class MPC():
|
|||
|
||||
# Interpolated Path to follow given waypoints
|
||||
#self.path = compute_path_from_wp([0,10,12,2,4,14],[0,0,2,10,12,12])
|
||||
self.path = compute_path_from_wp([0,3,4,6,10,12,14,6,1,0],
|
||||
[0,0,2,4,3,3,-2,-6,-2,-2],1)
|
||||
self.path = compute_path_from_wp([0,3,4,6,10,12,13,13,6,1,0],
|
||||
[0,0,2,4,3,3,-1,-2,-6,-2,-2],0.5)
|
||||
|
||||
# Sim help vars
|
||||
self.sim_time=0
|
||||
|
@ -174,7 +174,7 @@ class MPC():
|
|||
plt.subplot(grid[1, 2])
|
||||
#plt.title("Angular Velocity {} m/s".format(self.w_history[-1]))
|
||||
plt.plot(np.degrees(self.d_history),c='tab:orange')
|
||||
plt.ylabel('w(t) [deg]')
|
||||
plt.ylabel('gamma(t) [deg]')
|
||||
locs, _ = plt.xticks()
|
||||
plt.xticks(locs[1:], locs[1:]*P.dt)
|
||||
plt.xlabel('t [s]')
|
||||
|
@ -186,8 +186,8 @@ class MPC():
|
|||
|
||||
|
||||
def plot_car(x, y, yaw):
|
||||
LENGTH = 0.3 # [m]
|
||||
WIDTH = 0.1 # [m]
|
||||
LENGTH = 0.35 # [m]
|
||||
WIDTH = 0.2 # [m]
|
||||
OFFSET = LENGTH # [m]
|
||||
|
||||
outline = np.array([[-OFFSET, (LENGTH - OFFSET), (LENGTH - OFFSET), -OFFSET, -OFFSET],
|
||||
|
|
|
@ -20,21 +20,26 @@ def get_state(robotId):
|
|||
robPos, robOrn = p.getBasePositionAndOrientation(robotId)
|
||||
linVel,angVel = p.getBaseVelocity(robotId)
|
||||
|
||||
return[robPos[0], robPos[1], p.getEulerFromQuaternion(robOrn)[2]]
|
||||
return[robPos[0], robPos[1], linVel[0], p.getEulerFromQuaternion(robOrn)[2]]
|
||||
|
||||
def set_ctrl(robotId,v,w):
|
||||
"""
|
||||
"""
|
||||
L= 0.354
|
||||
R= 0.076/2
|
||||
def set_ctrl(robotId,currVel,acceleration,steeringAngle):
|
||||
|
||||
rightWheelVelocity= (2*v+w*L)/(2*R)
|
||||
leftWheelVelocity = (2*v-w*L)/(2*R)
|
||||
gearRatio=1./21
|
||||
steering = [0,2]
|
||||
wheels = [8,15]
|
||||
maxForce = 50
|
||||
|
||||
p.setJointMotorControl2(robotId,0,p.VELOCITY_CONTROL,targetVelocity=leftWheelVelocity,force=1000)
|
||||
p.setJointMotorControl2(robotId,1,p.VELOCITY_CONTROL,targetVelocity=rightWheelVelocity,force=1000)
|
||||
targetVelocity = currVel + acceleration*P.dt
|
||||
#targetVelocity=lastVel
|
||||
#print(targetVelocity)
|
||||
|
||||
def plot(path,x_history,y_history):
|
||||
for wheel in wheels:
|
||||
p.setJointMotorControl2(robotId,wheel,p.VELOCITY_CONTROL,targetVelocity=targetVelocity/gearRatio,force=maxForce)
|
||||
|
||||
for steer in steering:
|
||||
p.setJointMotorControl2(robotId,steer,p.POSITION_CONTROL,targetPosition=steeringAngle)
|
||||
|
||||
def plot_results(path,x_history,y_history):
|
||||
"""
|
||||
"""
|
||||
plt.style.use("ggplot")
|
||||
|
@ -52,24 +57,54 @@ def run_sim():
|
|||
"""
|
||||
p.connect(p.GUI)
|
||||
|
||||
start_offset = [0,2,0]
|
||||
start_orientation = p.getQuaternionFromEuler([0,0,0])
|
||||
turtle = p.loadURDF("turtlebot.urdf",start_offset, start_orientation)
|
||||
plane = p.loadURDF("plane.urdf")
|
||||
p.resetSimulation()
|
||||
|
||||
p.setRealTimeSimulation(1)
|
||||
p.setGravity(0,0,-10)
|
||||
useRealTimeSim = 1
|
||||
|
||||
# MPC time step
|
||||
P.dt = 0.25
|
||||
p.setTimeStep(1./120.)
|
||||
p.setRealTimeSimulation(useRealTimeSim) # either this
|
||||
|
||||
plane = p.loadURDF("racecar/plane.urdf")
|
||||
#track = p.loadSDF("racecar/f10_racecar/meshes/barca_track.sdf", globalScaling=1)
|
||||
|
||||
car = p.loadURDF("racecar/f10_racecar/racecar_differential.urdf", [0,0,.3])
|
||||
for wheel in range(p.getNumJoints(car)):
|
||||
print("joint[",wheel,"]=", p.getJointInfo(car,wheel))
|
||||
p.setJointMotorControl2(car,wheel,p.VELOCITY_CONTROL,targetVelocity=0,force=0)
|
||||
p.getJointInfo(car,wheel)
|
||||
|
||||
c = p.createConstraint(car,9,car,11,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=1, maxForce=10000)
|
||||
|
||||
c = p.createConstraint(car,10,car,13,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, maxForce=10000)
|
||||
|
||||
c = p.createConstraint(car,9,car,13,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, maxForce=10000)
|
||||
|
||||
c = p.createConstraint(car,16,car,18,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=1, maxForce=10000)
|
||||
|
||||
|
||||
c = p.createConstraint(car,16,car,19,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, maxForce=10000)
|
||||
|
||||
c = p.createConstraint(car,17,car,19,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, maxForce=10000)
|
||||
|
||||
c = p.createConstraint(car,1,car,18,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, gearAuxLink = 15, maxForce=10000)
|
||||
c = p.createConstraint(car,3,car,19,jointType=p.JOINT_GEAR,jointAxis =[0,1,0],parentFramePosition=[0,0,0],childFramePosition=[0,0,0])
|
||||
p.changeConstraint(c,gearRatio=-1, gearAuxLink = 15,maxForce=10000)
|
||||
|
||||
opt_u = np.zeros((P.M,P.T))
|
||||
opt_u[0,:] = 1 #m/s
|
||||
opt_u[1,:] = np.radians(0) #rad/s
|
||||
opt_u[0,:] = 1 #m/ss
|
||||
opt_u[1,:] = np.radians(0) #rad/
|
||||
|
||||
# Interpolated Path to follow given waypoints
|
||||
path = compute_path_from_wp([0,3,4,6,10,13],
|
||||
[0,0,2,4,3,3],1)
|
||||
path = compute_path_from_wp([0,3,4,6,10,11,12,6,1,0],
|
||||
[0,0,2,4,3,3,-1,-6,-2,-2],0.5)
|
||||
|
||||
for x_,y_ in zip(path[0,:],path[1,:]):
|
||||
p.addUserDebugLine([x_,y_,0],[x_,y_,0.33],[0,0,1])
|
||||
|
@ -77,9 +112,10 @@ def run_sim():
|
|||
x_history=[]
|
||||
y_history=[]
|
||||
|
||||
time.sleep(0.5)
|
||||
while (1):
|
||||
|
||||
state = get_state(turtle)
|
||||
state = get_state(car)
|
||||
x_history.append(state[0])
|
||||
y_history.append(state[1])
|
||||
|
||||
|
@ -88,18 +124,18 @@ def run_sim():
|
|||
|
||||
if np.sqrt((state[0]-path[0,-1])**2+(state[1]-path[1,-1])**2)<1:
|
||||
print("Success! Goal Reached")
|
||||
set_ctrl(turtle,0,0)
|
||||
plot(path,x_history,y_history)
|
||||
set_ctrl(car,0,0,0)
|
||||
plot_results(path,x_history,y_history)
|
||||
p.disconnect()
|
||||
return
|
||||
|
||||
#optimization loop
|
||||
start=time.time()
|
||||
opt_u = optimize(state,opt_u,path)
|
||||
opt_u = optimize(state,opt_u,path,ref_vel=1.0)
|
||||
elapsed=time.time()-start
|
||||
print("CVXPY Optimization Time: {:.4f}s".format(elapsed))
|
||||
|
||||
set_ctrl(turtle,opt_u[0,1],opt_u[1,1])
|
||||
set_ctrl(car,state[2],opt_u[0,1],opt_u[1,1])
|
||||
|
||||
if P.dt-elapsed>0:
|
||||
time.sleep(P.dt-elapsed)
|
||||
|
|
|
@ -9,9 +9,8 @@ def compute_path_from_wp(start_xp, start_yp, step = 0.1):
|
|||
delta = step #[m]
|
||||
|
||||
for idx in range(len(start_xp)-1):
|
||||
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
|
||||
|
||||
interp_range = np.linspace(0,1,np.floor(section_len/delta).astype(int))
|
||||
section_len = np.sqrt(np.sum(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
|
||||
interp_range = np.linspace(0,1, int(1+section_len/delta))
|
||||
|
||||
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
|
||||
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
|
||||
|
@ -54,9 +53,9 @@ def road_curve(state,track):
|
|||
POLY_RANK = 3
|
||||
|
||||
#given vehicle pos find lookahead waypoints
|
||||
nn_idx=get_nn_idx(state,track)-1
|
||||
LOOKAHED = POLY_RANK + 1
|
||||
lk_wp=track[:,nn_idx:nn_idx+LOOKAHED]
|
||||
nn_idx=get_nn_idx(state,track)
|
||||
LOOKAHED = POLY_RANK*2
|
||||
lk_wp=track[:,max(0,nn_idx-1):nn_idx+LOOKAHED]
|
||||
|
||||
#trasform lookahead waypoints to vehicle ref frame
|
||||
dx = lk_wp[0,:] - state[0]
|
||||
|
@ -68,17 +67,32 @@ def road_curve(state,track):
|
|||
#fit poly
|
||||
return np.polyfit(wp_vehicle_frame[0,:], wp_vehicle_frame[1,:], POLY_RANK, rcond=None, full=False, w=None, cov=False)
|
||||
|
||||
def f(x,coeff):
|
||||
"""
|
||||
"""
|
||||
return round(coeff[0]*x**3 + coeff[1]*x**2 + coeff[2]*x**1 + coeff[3]*x**0,6)
|
||||
# def f(x,coeff):
|
||||
# """
|
||||
# """
|
||||
# return round(coeff[0]*x**3 + coeff[1]*x**2 + coeff[2]*x**1 + coeff[3]*x**0,6)
|
||||
|
||||
# def f(x,coeff):
|
||||
# return round(coeff[0]*x**5+coeff[1]*x**4+coeff[2]*x**3+coeff[3]*x**2+coeff[4]*x**1+coeff[5]*x**0,6)
|
||||
|
||||
def df(x,coeff):
|
||||
"""
|
||||
"""
|
||||
return round(3*coeff[0]*x**2 + 2*coeff[1]*x**1 + coeff[2]*x**0,6)
|
||||
def f(x,coeff):
|
||||
y=0
|
||||
j=len(coeff)
|
||||
for k in range(j):
|
||||
y += coeff[k]*x**(j-k-1)
|
||||
return round(y,6)
|
||||
|
||||
# def df(x,coeff):
|
||||
# """
|
||||
# """
|
||||
# return round(3*coeff[0]*x**2 + 2*coeff[1]*x**1 + coeff[2]*x**0,6)
|
||||
|
||||
# def df(x,coeff):
|
||||
# return round(5*coeff[0]*x**4 + 4*coeff[1]*x**3 +3*coeff[2]*x**2 + 2*coeff[3]*x**1 + coeff[4]*x**0,6)
|
||||
|
||||
def df(x,coeff):
|
||||
y=0
|
||||
j=len(coeff)
|
||||
for k in range(j-1):
|
||||
y += (j-k-1)*coeff[k]*x**(j-k-2)
|
||||
return round(y,6)
|
||||
|
|