gtsam/gtsam.h

953 lines
31 KiB
C++

/**
* GTSAM Wrap Module Definition
*
* These are the current classes available through the matlab toolbox interface,
* add more functions/classes as they are available.
*
* Requirements:
* Classes must start with an uppercase letter
* Only one Method/Constructor per line
* Methods can return
* - Eigen types: Matrix, Vector
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - void
* - Any class with which be copied with boost::make_shared()
* - boost::shared_ptr of any object type
* Limitations on methods
* - Parsing does not support overloading
* - There can only be one method (static or otherwise) with a given name
* Arguments to functions any of
* - Eigen types: Matrix, Vector
* - Eigen types and classes as an optionally const reference
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - Any class with which be copied with boost::make_shared() (except Eigen)
* - boost::shared_ptr of any object type (except Eigen)
* Comments can use either C++ or C style, with multiple lines
* Namespace definitions
* - Names of namespaces must start with a lowercase letter
* - start a namespace with "namespace {"
* - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace
* - This ending is not C++ standard, and must contain "}///\namespace" to parse
* - Namespaces can be nested
* Namespace usage
* - Namespaces can be specified for classes in arguments and return values
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
* Using namespace
* - To use a namespace (e.g., generate a "using namespace x" line in cpp files), add "using namespace x;"
* - This declaration applies to all classes *after* the declaration, regardless of brackets
* Methods must start with a lowercase letter
* Static methods must start with a letter (upper or lowercase) and use the "static" keyword
* Includes in C++ wrappers
* - By default, the include will be <[classname].h>
* - All namespaces must have angle brackets: <path>
* - To override, add a full include statement just before the class statement
* - An override include can be added for a namespace by placing it just before the namespace statement
* - Both classes and namespace accept exactly one namespace
* Overriding type dependency checks
* - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error
* - Limitation: this only works if the class does not need a namespace specification
*/
/**
* Status:
* - TODO: global functions
* - TODO: default values for arguments
* - TODO: overloaded functions
* - TODO: signatures for constructors can be ambiguous if two types have the same first letter
* - TODO: Handle gtsam::Rot3M conversions to quaternions
*/
namespace gtsam {
//*************************************************************************
// base
//*************************************************************************
//*************************************************************************
// geometry
//*************************************************************************
class Point2 {
// Standard Constructors
Point2();
Point2(double x, double y);
Point2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point2& pose, double tol) const;
// Group
static gtsam::Point2 identity();
gtsam::Point2 inverse() const;
gtsam::Point2 compose(const gtsam::Point2& p2) const;
gtsam::Point2 between(const gtsam::Point2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point2& p) const;
// Lie Group
static gtsam::Point2 Expmap(Vector v);
static Vector Logmap(const gtsam::Point2& p);
// Standard Interface
double x() const;
double y() const;
Vector vector() const;
};
class StereoPoint2 {
// Standard Constructors
StereoPoint2();
StereoPoint2(double uL, double uR, double v);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::StereoPoint2 retract(Vector v) const;
Vector localCoordinates(const gtsam::StereoPoint2& p) const;
// Lie Group
static gtsam::StereoPoint2 Expmap(Vector v);
static Vector Logmap(const gtsam::StereoPoint2& p);
// Standard Interface
Vector vector() const;
};
class Point3 {
// Standard Constructors
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
gtsam::Point3 inverse() const;
gtsam::Point3 compose(const gtsam::Point3& p2) const;
gtsam::Point3 between(const gtsam::Point3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point3& p) const;
// Lie Group
static gtsam::Point3 Expmap(Vector v);
static Vector Logmap(const gtsam::Point3& p);
// Standard Interface
Vector vector() const;
double x() const;
double y() const;
double z() const;
};
class Rot2 {
// Standard Constructors and Named Constructors
Rot2();
Rot2(double theta);
static gtsam::Rot2 fromAngle(double theta);
static gtsam::Rot2 fromDegrees(double theta);
static gtsam::Rot2 fromCosSin(double c, double s);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Rot2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot2& p) const;
// Lie Group
static gtsam::Rot2 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot2& p);
// Group Action on Point2
gtsam::Point2 rotate(const gtsam::Point2& point) const;
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
// Standard Interface
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
static gtsam::Rot2 atan2(double y, double x);
double theta() const;
double degrees() const;
double c() const;
double s() const;
Matrix matrix() const;
};
class Rot3 {
// Standard Constructors and Named Constructors
Rot3();
Rot3(Matrix R);
static gtsam::Rot3 Rx(double t);
static gtsam::Rot3 Ry(double t);
static gtsam::Rot3 Rz(double t);
// static gtsam::Rot3 RzRyRx(double x, double y, double z); // FIXME: overloaded functions don't work yet
static gtsam::Rot3 RzRyRx(Vector xyz);
static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading)
static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft)
static gtsam::Rot3 ypr(double y, double p, double r);
static gtsam::Rot3 quaternion(double w, double x, double y, double z);
static gtsam::Rot3 rodriguez(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
// gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
gtsam::Rot3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot3& p) const;
// Group Action on Point3
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);
Matrix matrix() const;
Matrix transpose() const;
gtsam::Point3 column(size_t index) const;
Vector xyz() const;
Vector ypr() const;
Vector rpy() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
};
class Pose2 {
// Standard Constructor
Pose2();
Pose2(double x, double y, double theta);
Pose2(double theta, const gtsam::Point2& t);
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
Pose2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose2& p) const;
// Lie Group
static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p);
Matrix adjointMap() const;
Vector adjoint(const Vector& xi) const;
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
gtsam::Point2 transform_from(const gtsam::Point2& p) const;
gtsam::Point2 transform_to(const gtsam::Point2& p) const;
// Standard Interface
double x() const;
double y() const;
double theta() const;
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
double range(const gtsam::Point2& point) const;
gtsam::Point2 translation() const;
gtsam::Rot2 rotation() const;
Matrix matrix() const;
};
class Pose3 {
// Standard Constructors
Pose3();
Pose3(const gtsam::Pose3& pose);
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
// Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
Pose3(Matrix t);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose3 retract(Vector v) const;
gtsam::Pose3 retractFirstOrder(Vector v) const;
Vector localCoordinates(const gtsam::Pose3& T2) const;
// Lie Group
static gtsam::Pose3 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose3& p);
Matrix adjointMap() const;
Vector adjoint(const Vector& xi) const;
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
// Group Action on Point3
gtsam::Point3 transform_from(const gtsam::Point3& p) const;
gtsam::Point3 transform_to(const gtsam::Point3& p) const;
// Standard Interface
gtsam::Rot3 rotation() const;
gtsam::Point3 translation() const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
// gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to()
double range(const gtsam::Point3& point);
// double range(const gtsam::Pose3& pose); // FIXME: shadows other range
};
class Cal3_S2 {
// Standard Constructors
Cal3_S2();
Cal3_S2(double fx, double fy, double s, double u0, double v0);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2& pose, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3_S2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3_S2& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
Vector vector() const;
Matrix matrix() const;
Matrix matrix_inverse() const;
};
class Cal3_S2Stereo {
// Standard Constructors
Cal3_S2Stereo();
Cal3_S2Stereo(double fx, double fy, double s, double u0, double v0, double b);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2Stereo& pose, double tol) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
double baseline() const;
};
class CalibratedCamera {
// Standard Constructors and Named Constructors
CalibratedCamera();
CalibratedCamera(const gtsam::Pose3& pose);
CalibratedCamera(const Vector& v);
gtsam::CalibratedCamera level(const gtsam::Pose2& pose2, double height);
// Testable
void print(string s) const;
bool equals(const gtsam::CalibratedCamera& camera, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::CalibratedCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::CalibratedCamera& T2) const;
// Group
gtsam::CalibratedCamera compose(const gtsam::CalibratedCamera& c) const;
gtsam::CalibratedCamera inverse() const;
// Action on Point3
gtsam::Point2 project(const gtsam::Point3& point) const;
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
// Standard Interface
gtsam::Pose3 pose() const;
double range(const gtsam::Point3& p) const; // TODO: Other overloaded range methods
};
class SimpleCamera {
// Standard Constructors and Named Constructors
SimpleCamera();
SimpleCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2& k);
SimpleCamera(const gtsam::Cal3_S2& k, const gtsam::Pose3& pose);
// Testable
void print(string s) const;
bool equals(const gtsam::SimpleCamera& camera, double tol) const;
// Action on Point3
gtsam::Point2 project(const gtsam::Point3& point);
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
// Backprojection
gtsam::Point3 backproject(const gtsam::Point2& pi, double scale) const;
gtsam::Point3 backproject_from_camera(const gtsam::Point2& pi, double scale) const;
// Standard Interface
gtsam::Pose3 pose() const;
// Convenient generators
static gtsam::SimpleCamera lookat(const gtsam::Point3& eye,
const gtsam::Point3& target, const gtsam::Point3& upVector,
const gtsam::Cal3_S2& k);
};
//*************************************************************************
// inference
//*************************************************************************
//*************************************************************************
// linear
//*************************************************************************
class SharedGaussian {
SharedGaussian(Matrix covariance);
void print(string s) const;
};
class SharedDiagonal {
SharedDiagonal(Vector sigmas);
void print(string s) const;
Vector sample() const;
};
class SharedNoiseModel {
static gtsam::SharedNoiseModel Sigmas(Vector sigmas);
static gtsam::SharedNoiseModel Sigma(size_t dim, double sigma);
static gtsam::SharedNoiseModel Precisions(Vector precisions);
static gtsam::SharedNoiseModel Precision(size_t dim, double precision);
static gtsam::SharedNoiseModel Unit(size_t dim);
static gtsam::SharedNoiseModel SqrtInformation(Matrix R);
static gtsam::SharedNoiseModel Covariance(Matrix covariance);
void print(string s) const;
};
class VectorValues {
VectorValues();
VectorValues(size_t nVars, size_t varDim);
void print(string s) const;
bool equals(const gtsam::VectorValues& expected, double tol) const;
size_t size() const;
void insert(size_t j, Vector value);
};
class GaussianConditional {
GaussianConditional(size_t key, Vector d, Matrix R, Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
size_t name2, Matrix T, Vector sigmas);
void print(string s) const;
bool equals(const gtsam::GaussianConditional &cg, double tol) const;
};
class GaussianDensity {
GaussianDensity(size_t key, Vector d, Matrix R, Vector sigmas);
void print(string s) const;
Vector mean() const;
Matrix information() const;
Matrix covariance() const;
};
class GaussianBayesNet {
GaussianBayesNet();
void print(string s) const;
bool equals(const gtsam::GaussianBayesNet& cbn, double tol) const;
void push_back(gtsam::GaussianConditional* conditional);
void push_front(gtsam::GaussianConditional* conditional);
};
class GaussianFactor {
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
};
class JacobianFactor {
JacobianFactor();
JacobianFactor(Vector b_in);
JacobianFactor(size_t i1, Matrix A1, Vector b,
const gtsam::SharedDiagonal& model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b,
const gtsam::SharedDiagonal& model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3,
Vector b, const gtsam::SharedDiagonal& model);
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
bool empty() const;
Vector getb() const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianConditional* eliminateFirst();
};
class HessianFactor {
HessianFactor(const gtsam::HessianFactor& gf);
HessianFactor();
HessianFactor(size_t j, Matrix G, Vector g, double f);
HessianFactor(size_t j, Vector mu, Matrix Sigma);
HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22,
Vector g2, double f);
HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13,
Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3,
double f);
HessianFactor(const gtsam::GaussianConditional& cg);
HessianFactor(const gtsam::GaussianFactor& factor);
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
};
class GaussianFactorGraph {
GaussianFactorGraph();
GaussianFactorGraph(const gtsam::GaussianBayesNet& CBN);
// From FactorGraph
void push_back(gtsam::GaussianFactor* factor);
void print(string s) const;
bool equals(const gtsam::GaussianFactorGraph& lfgraph, double tol) const;
size_t size() const;
// Building the graph
void add(gtsam::JacobianFactor* factor);
// all these won't work as MATLAB can't handle overloading
// void add(Vector b);
// void add(size_t key1, Matrix A1, Vector b, const gtsam::SharedDiagonal& model);
// void add(size_t key1, Matrix A1, size_t key2, Matrix A2, Vector b,
// const gtsam::SharedDiagonal& model);
// void add(size_t key1, Matrix A1, size_t key2, Matrix A2, size_t key3, Matrix A3,
// Vector b, const gtsam::SharedDiagonal& model);
// void add(gtsam::HessianFactor* factor);
// error and probability
double error(const gtsam::VectorValues& c) const;
double probPrime(const gtsam::VectorValues& c) const;
// combining
static gtsam::GaussianFactorGraph combine2(
const gtsam::GaussianFactorGraph& lfg1,
const gtsam::GaussianFactorGraph& lfg2);
void combine(const gtsam::GaussianFactorGraph& lfg);
// Conversion to matrices
Matrix sparseJacobian_() const;
Matrix denseJacobian() const;
Matrix denseHessian() const;
};
class GaussianISAM {
GaussianISAM();
void saveGraph(string s) const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const;
Matrix marginalCovariance(size_t key) const;
gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const;
};
class GaussianSequentialSolver {
GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph,
bool useQR);
gtsam::GaussianBayesNet* eliminate() const;
gtsam::VectorValues* optimize() const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
Matrix marginalCovariance(size_t j) const;
};
class KalmanFilter {
KalmanFilter(size_t n);
// gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0);
gtsam::GaussianDensity* init(Vector x0, Matrix P0);
void print(string s) const;
static size_t step(gtsam::GaussianDensity* p);
gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, const gtsam::SharedDiagonal& modelQ);
gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, Matrix Q);
gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0,
Matrix A1, Vector b, const gtsam::SharedDiagonal& model);
gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H,
Vector z, const gtsam::SharedDiagonal& model);
gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H,
Vector z, Matrix Q);
};
//*************************************************************************
// nonlinear
//*************************************************************************
class Symbol {
Symbol(char c, size_t j);
void print(string s) const;
size_t key() const;
};
class Ordering {
Ordering();
void print(string s) const;
bool equals(const gtsam::Ordering& ord, double tol) const;
void push_back(size_t key);
};
class NonlinearFactorGraph {
NonlinearFactorGraph();
};
class Values {
Values();
size_t size() const;
void print(string s) const;
bool exists(size_t j) const;
};
class Marginals {
Marginals(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& solution);
void print(string s) const;
Matrix marginalCovariance(size_t variable) const;
Matrix marginalInformation(size_t variable) const;
};
}///\namespace gtsam
//*************************************************************************
// Pose2SLAM
//*************************************************************************
#include <gtsam/slam/pose2SLAM.h>
namespace pose2SLAM {
class Values {
Values();
size_t size() const;
void print(string s) const;
static pose2SLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose2& pose);
void updatePose(size_t key, const gtsam::Pose2& pose);
gtsam::Pose2 pose(size_t i);
Vector xs() const;
Vector ys() const;
Vector thetas() const;
};
class Graph {
Graph();
// FactorGraph
void print(string s) const;
bool equals(const pose2SLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
// NonlinearFactorGraph
double error(const pose2SLAM::Values& values) const;
double probPrime(const pose2SLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const pose2SLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const pose2SLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose2SLAM-specific
void addPrior(size_t key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel);
void addPoseConstraint(size_t key, const gtsam::Pose2& pose);
void addOdometry(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel);
void addConstraint(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel);
pose2SLAM::Values optimize(const pose2SLAM::Values& initialEstimate) const;
pose2SLAM::Values optimizeSPCG(const pose2SLAM::Values& initialEstimate) const;
gtsam::Marginals marginals(const pose2SLAM::Values& solution) const;
};
}///\namespace pose2SLAM
//*************************************************************************
// Pose3SLAM
//*************************************************************************
#include <gtsam/slam/pose3SLAM.h>
namespace pose3SLAM {
class Values {
Values();
size_t size() const;
void print(string s) const;
static pose3SLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose3& pose);
void updatePose(size_t key, const gtsam::Pose3& pose);
gtsam::Pose3 pose(size_t i);
Vector xs() const;
Vector ys() const;
Vector zs() const;
};
class Graph {
Graph();
// FactorGraph
void print(string s) const;
bool equals(const pose3SLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
// NonlinearFactorGraph
double error(const pose3SLAM::Values& values) const;
double probPrime(const pose3SLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const pose3SLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const pose3SLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose3SLAM-specific
void addPrior(size_t key, const gtsam::Pose3& p, const gtsam::SharedNoiseModel& model);
void addConstraint(size_t key1, size_t key2, const gtsam::Pose3& z, const gtsam::SharedNoiseModel& model);
void addHardConstraint(size_t i, const gtsam::Pose3& p);
pose3SLAM::Values optimize(const pose3SLAM::Values& initialEstimate) const;
gtsam::Marginals marginals(const pose3SLAM::Values& solution) const;
};
}///\namespace pose3SLAM
//*************************************************************************
// planarSLAM
//*************************************************************************
#include <gtsam/slam/planarSLAM.h>
namespace planarSLAM {
class Values {
Values();
size_t size() const;
void print(string s) const;
void insertPose(size_t key, const gtsam::Pose2& pose);
void insertPoint(size_t key, const gtsam::Point2& point);
void updatePose(size_t key, const gtsam::Pose2& pose);
void updatePoint(size_t key, const gtsam::Point2& point);
gtsam::Pose2 pose(size_t key) const;
gtsam::Point2 point(size_t key) const;
};
class Graph {
Graph();
// FactorGraph
void print(string s) const;
bool equals(const planarSLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
// NonlinearFactorGraph
double error(const planarSLAM::Values& values) const;
double probPrime(const planarSLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const planarSLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const planarSLAM::Values& values,
const gtsam::Ordering& ordering) const;
// planarSLAM-specific
void addPrior(size_t key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel);
void addPoseConstraint(size_t key, const gtsam::Pose2& pose);
void addOdometry(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel);
void addBearing(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing, const gtsam::SharedNoiseModel& noiseModel);
void addRange(size_t poseKey, size_t pointKey, double range, const gtsam::SharedNoiseModel& noiseModel);
void addBearingRange(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing,double range, const gtsam::SharedNoiseModel& noiseModel);
planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate);
gtsam::Marginals marginals(const planarSLAM::Values& solution) const;
};
class Odometry {
Odometry(size_t key1, size_t key2, const gtsam::Pose2& measured,
const gtsam::SharedNoiseModel& model);
void print(string s) const;
gtsam::GaussianFactor* linearize(const planarSLAM::Values& center,
const gtsam::Ordering& ordering) const;
};
}///\namespace planarSLAM
//*************************************************************************
// Simulated2D
//*************************************************************************
#include <tests/simulated2D.h>
namespace simulated2D {
class Values {
Values();
void insertPose(size_t i, const gtsam::Point2& p);
void insertPoint(size_t j, const gtsam::Point2& p);
size_t nrPoses() const;
size_t nrPoints() const;
gtsam::Point2 pose(size_t i);
gtsam::Point2 point(size_t j);
};
class Graph {
Graph();
};
// TODO: add factors, etc.
}///\namespace simulated2D
// Simulated2DOriented Example Domain
#include <tests/simulated2DOriented.h>
namespace simulated2DOriented {
class Values {
Values();
void insertPose(size_t i, const gtsam::Pose2& p);
void insertPoint(size_t j, const gtsam::Point2& p);
size_t nrPoses() const;
size_t nrPoints() const;
gtsam::Pose2 pose(size_t i);
gtsam::Point2 point(size_t j);
};
class Graph {
Graph();
};
// TODO: add factors, etc.
}///\namespace simulated2DOriented
//*************************************************************************
// VisualSLAM
//*************************************************************************
#include <gtsam/slam/visualSLAM.h>
namespace visualSLAM {
class Values {
Values();
void insertPose(size_t key, const gtsam::Pose3& pose);
void insertPoint(size_t key, const gtsam::Point3& pose);
void updatePose(size_t key, const gtsam::Pose3& pose);
void updatePoint(size_t key, const gtsam::Point3& pose);
size_t size() const;
size_t nrPoses() const;
size_t nrPoints() const;
void print(string s) const;
gtsam::Pose3 pose(size_t i);
gtsam::Point3 point(size_t j);
bool exists(size_t key);
Vector xs() const;
Vector ys() const;
Vector zs() const;
Matrix points() const;
};
class Graph {
Graph();
void print(string s) const;
double error(const visualSLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const visualSLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const visualSLAM::Values& values,
const gtsam::Ordering& ordering) const;
// Measurements
void addMeasurement(const gtsam::Point2& measured, const gtsam::SharedNoiseModel& model,
size_t poseKey, size_t pointKey, const gtsam::Cal3_S2* K);
void addStereoMeasurement(const gtsam::StereoPoint2& measured, const gtsam::SharedNoiseModel& model,
size_t poseKey, size_t pointKey, const gtsam::Cal3_S2Stereo* K);
// Constraints
void addPoseConstraint(size_t poseKey, const gtsam::Pose3& p);
void addPointConstraint(size_t pointKey, const gtsam::Point3& p);
// Priors
void addPosePrior(size_t poseKey, const gtsam::Pose3& p, const gtsam::SharedNoiseModel& model);
void addPointPrior(size_t pointKey, const gtsam::Point3& p, const gtsam::SharedNoiseModel& model);
void addRangeFactor(size_t poseKey, size_t pointKey, double range, const gtsam::SharedNoiseModel& model);
void addOdometry(size_t poseKey1, size_t poseKey2, const gtsam::Pose3& odometry, const gtsam::SharedNoiseModel& model);
visualSLAM::Values optimize(const visualSLAM::Values& initialEstimate) const;
gtsam::Marginals marginals(const visualSLAM::Values& solution) const;
};
class ISAM {
ISAM();
ISAM(int reorderInterval);
void print(string s) const;
void printStats() const;
void saveGraph(string s) const;
visualSLAM::Values estimate() const;
Matrix marginalCovariance(size_t key) const;
int reorderInterval() const;
int reorderCounter() const;
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
void reorder_relinearize();
void addKey(size_t key);
void setOrdering(const gtsam::Ordering& new_ordering);
};
}///\namespace visualSLAM