435 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file testExtendedKalmanFilter
 | |
|  * @author Stephen Williams
 | |
|  */
 | |
| 
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/nonlinear/ExtendedKalmanFilter-inl.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ExtendedKalmanFilter, linear ) {
 | |
| 
 | |
|   // Create the TestKeys for our example
 | |
|   Symbol x0('x',0), x1('x',1), x2('x',2), x3('x',3);
 | |
| 
 | |
|   // Create the Kalman Filter initialization point
 | |
|   Point2 x_initial(0.0, 0.0);
 | |
|   SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
 | |
| 
 | |
|   // Create an ExtendedKalmanFilter object
 | |
|   ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
 | |
| 
 | |
|   // Create the controls and measurement properties for our example
 | |
|   double dt = 1.0;
 | |
|   Vector u = Vector_(2, 1.0, 0.0);
 | |
|   Point2 difference(u*dt);
 | |
|   SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1), true);
 | |
|   Point2 z1(1.0, 0.0);
 | |
|   Point2 z2(2.0, 0.0);
 | |
|   Point2 z3(3.0, 0.0);
 | |
|   SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25), true);
 | |
| 
 | |
|   // Create the set of expected output TestValues
 | |
|   Point2 expected1(1.0, 0.0);
 | |
|   Point2 expected2(2.0, 0.0);
 | |
|   Point2 expected3(3.0, 0.0);
 | |
| 
 | |
|   // Run iteration 1
 | |
|   // Create motion factor
 | |
|   BetweenFactor<Point2> factor1(x0, x1, difference, Q);
 | |
|   Point2 predict1 = ekf.predict(factor1);
 | |
|   EXPECT(assert_equal(expected1,predict1));
 | |
| 
 | |
|   // Create the measurement factor
 | |
|   PriorFactor<Point2> factor2(x1, z1, R);
 | |
|   Point2 update1 = ekf.update(factor2);
 | |
|   EXPECT(assert_equal(expected1,update1));
 | |
| 
 | |
|   // Run iteration 2
 | |
|   BetweenFactor<Point2> factor3(x1, x2, difference, Q);
 | |
|   Point2 predict2 = ekf.predict(factor3);
 | |
|   EXPECT(assert_equal(expected2,predict2));
 | |
| 
 | |
|   PriorFactor<Point2> factor4(x2, z2, R);
 | |
|   Point2 update2 = ekf.update(factor4);
 | |
|   EXPECT(assert_equal(expected2,update2));
 | |
| 
 | |
|   // Run iteration 3
 | |
|   BetweenFactor<Point2> factor5(x2, x3, difference, Q);
 | |
|   Point2 predict3 = ekf.predict(factor5);
 | |
|   EXPECT(assert_equal(expected3,predict3));
 | |
| 
 | |
|   PriorFactor<Point2> factor6(x3, z3, R);
 | |
|   Point2 update3 = ekf.update(factor6);
 | |
|   EXPECT(assert_equal(expected3,update3));
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Create Motion Model Factor
 | |
| class NonlinearMotionModel : public NoiseModelFactor2<Point2,Point2> {
 | |
| public:
 | |
|   typedef Point2 T;
 | |
| 
 | |
| private:
 | |
|   typedef NoiseModelFactor2<Point2, Point2> Base;
 | |
|   typedef NonlinearMotionModel This;
 | |
| 
 | |
| protected:
 | |
|   Matrix Q_;
 | |
|   Matrix Q_invsqrt_;
 | |
| 
 | |
| public:
 | |
|   NonlinearMotionModel(){}
 | |
| 
 | |
|   NonlinearMotionModel(const Symbol& TestKey1, const Symbol& TestKey2) :
 | |
|     Base(noiseModel::Diagonal::Sigmas(Vector_(2, 1.0, 1.0)), TestKey1, TestKey2), Q_(2,2) {
 | |
| 
 | |
|     // Initialize motion model parameters:
 | |
|     // w is vector of motion noise sigmas. The final covariance is calculated as G*w*w'*G'
 | |
|     // In this model, Q is fixed, so it may be calculated in the constructor
 | |
|     Matrix G(2,2);
 | |
|     Matrix w(2,2);
 | |
| 
 | |
|     G << 1.0, 0.0, 0.0, 1.0;
 | |
|     w << 1.0, 0.0, 0.0, 1.0;
 | |
| 
 | |
|     w = G*w;
 | |
|     Q_ = w*w.transpose();
 | |
|     Q_invsqrt_ = inverse_square_root(Q_);
 | |
|   }
 | |
| 
 | |
|   virtual ~NonlinearMotionModel() {}
 | |
| 
 | |
|   // Calculate the next state prediction using the nonlinear function f()
 | |
|   T f(const T& x_t0) const {
 | |
| 
 | |
|     // Calculate f(x)
 | |
|     double x = x_t0.x() * x_t0.x();
 | |
|     double y = x_t0.x() * x_t0.y();
 | |
|     T x_t1(x,y);
 | |
| 
 | |
|     // In this example, the noiseModel remains constant
 | |
|     return x_t1;
 | |
|   }
 | |
| 
 | |
|   // Calculate the Jacobian of the nonlinear function f()
 | |
|   Matrix F(const T& x_t0) const {
 | |
|     // Calculate Jacobian of f()
 | |
|     Matrix F = Matrix(2,2);
 | |
|     F(0,0) = 2*x_t0.x();
 | |
|     F(0,1) = 0.0;
 | |
|     F(1,0) = x_t0.y();
 | |
|     F(1,1) = x_t0.x();
 | |
| 
 | |
|     return F;
 | |
|   }
 | |
| 
 | |
|   // Calculate the inverse square root of the motion model covariance, Q
 | |
|   Matrix QInvSqrt(const T& x_t0) const {
 | |
|     // This motion model has a constant covariance
 | |
|     return Q_invsqrt_;
 | |
|   }
 | |
| 
 | |
|   /* print */
 | |
|   virtual void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|     std::cout << s << ": NonlinearMotionModel\n";
 | |
|     std::cout << "  TestKey1: " << keyFormatter(key1()) << std::endl;
 | |
|     std::cout << "  TestKey2: " << keyFormatter(key2()) << std::endl;
 | |
|   }
 | |
| 
 | |
|   /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
 | |
|   virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
 | |
|     const This *e = dynamic_cast<const This*> (&f);
 | |
|     return (e != NULL) && (key1() == e->key1()) && (key2() == e->key2());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * calculate the error of the factor
 | |
|    * Override for systems with unusual noise models
 | |
|    */
 | |
|   virtual double error(const Values& c) const {
 | |
|     Vector w = whitenedError(c);
 | |
|     return 0.5 * w.dot(w);
 | |
|   }
 | |
| 
 | |
|   /** get the dimension of the factor (number of rows on linearization) */
 | |
|   size_t dim() const {
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   /** Vector of errors, whitened ! */
 | |
|   Vector whitenedError(const Values& c) const {
 | |
|     return QInvSqrt(c.at<T>(key1()))*unwhitenedError(c);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Linearize a non-linearFactor2 to get a GaussianFactor
 | |
|    * Ax-b \approx h(x1+dx1,x2+dx2)-z = h(x1,x2) + A2*dx1 + A2*dx2 - z
 | |
|    * Hence b = z - h(x1,x2) = - error_vector(x)
 | |
|    */
 | |
|   boost::shared_ptr<GaussianFactor> linearize(const Values& c, const Ordering& ordering) const {
 | |
|     const X1& x1 = c.at<X1>(key1());
 | |
|     const X2& x2 = c.at<X2>(key2());
 | |
|     Matrix A1, A2;
 | |
|     Vector b = -evaluateError(x1, x2, A1, A2);
 | |
|     const Index var1 = ordering[key1()], var2 = ordering[key2()];
 | |
|     SharedDiagonal constrained =
 | |
|         boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
 | |
|     if (constrained.get() != NULL) {
 | |
|       return JacobianFactor::shared_ptr(new JacobianFactor(var1, A1, var2,
 | |
|           A2, b, constrained));
 | |
|     }
 | |
|     // "Whiten" the system before converting to a Gaussian Factor
 | |
|     Matrix Qinvsqrt = QInvSqrt(x1);
 | |
|     A1 = Qinvsqrt*A1;
 | |
|     A2 = Qinvsqrt*A2;
 | |
|     b = Qinvsqrt*b;
 | |
|     return GaussianFactor::shared_ptr(new JacobianFactor(var1, A1, var2,
 | |
|         A2, b, noiseModel::Unit::Create(b.size())));
 | |
|   }
 | |
| 
 | |
|   /** vector of errors */
 | |
|   Vector evaluateError(const T& p1, const T& p2,
 | |
|       boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
 | |
|           boost::none) const {
 | |
| 
 | |
|     // error = p2 - f(p1)
 | |
|     // H1 = d error / d p1 = -d f/ d p1 = -F
 | |
|     // H2 = d error / d p2 = I
 | |
|     T prediction = f(p1);
 | |
| 
 | |
|     if(H1){
 | |
|       *H1 = -F(p1);
 | |
|     }
 | |
| 
 | |
|     if(H2){
 | |
|       *H2 = eye(dim());
 | |
|     }
 | |
| 
 | |
|     // Return the error between the prediction and the supplied value of p2
 | |
|     return prediction.localCoordinates(p2);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| // Create Measurement Model Factor
 | |
| class NonlinearMeasurementModel : public NoiseModelFactor1<Point2> {
 | |
| public:
 | |
|   typedef Point2 T;
 | |
| 
 | |
| private:
 | |
| 
 | |
|   typedef NoiseModelFactor1<Point2> Base;
 | |
|   typedef NonlinearMeasurementModel This;
 | |
| 
 | |
| protected:
 | |
|   Vector z_; /** The measurement */
 | |
|   Matrix R_; /** The measurement error covariance */
 | |
|   Matrix R_invsqrt_; /** The inv sqrt of the measurement error covariance */
 | |
| 
 | |
| public:
 | |
|   NonlinearMeasurementModel(){}
 | |
| 
 | |
|   NonlinearMeasurementModel(const Symbol& TestKey, Vector z) :
 | |
|     Base(noiseModel::Unit::Create(z.size()), TestKey), z_(z), R_(1,1) {
 | |
| 
 | |
|     // Initialize nonlinear measurement model parameters:
 | |
|     // z(t) = H*x(t) + v
 | |
|     // where v ~ N(0, noiseModel_)
 | |
|     R_ << 1.0;
 | |
|     R_invsqrt_ = inverse_square_root(R_);
 | |
|   }
 | |
| 
 | |
|   virtual ~NonlinearMeasurementModel() {}
 | |
| 
 | |
|   // Calculate the predicted measurement using the nonlinear function h()
 | |
|   // Byproduct: updates Jacobian H, and noiseModel (R)
 | |
|   Vector h(const T& x_t1) const {
 | |
| 
 | |
|     // Calculate prediction
 | |
|     Vector z_hat(1);
 | |
|     z_hat(0) = 2*x_t1.x()*x_t1.x() - x_t1.x()*x_t1.y() - 2.5*x_t1.x() + 7*x_t1.y();
 | |
| 
 | |
|     return z_hat;
 | |
|   }
 | |
| 
 | |
|   Matrix H(const T& x_t1) const {
 | |
|     // Update Jacobian
 | |
|     Matrix H(1,2);
 | |
|     H(0,0) =  4*x_t1.x() - x_t1.y() - 2.5;
 | |
|     H(0,1) = -1*x_t1.x() + 7;
 | |
| 
 | |
|     return H;
 | |
|   }
 | |
| 
 | |
|   // Calculate the inverse square root of the motion model covariance, Q
 | |
|   Matrix RInvSqrt(const T& x_t0) const {
 | |
|     // This motion model has a constant covariance
 | |
|     return R_invsqrt_;
 | |
|   }
 | |
| 
 | |
|   /* print */
 | |
|   virtual void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|     std::cout << s << ": NonlinearMeasurementModel\n";
 | |
|     std::cout << "  TestKey: " << keyFormatter(key()) << std::endl;
 | |
|   }
 | |
| 
 | |
|   /** Check if two factors are equal. Note type is IndexFactor and needs cast. */
 | |
|   virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
 | |
|     const This *e = dynamic_cast<const This*> (&f);
 | |
|     return (e != NULL) && Base::equals(f);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * calculate the error of the factor
 | |
|    * Override for systems with unusual noise models
 | |
|    */
 | |
|   virtual double error(const Values& c) const {
 | |
|     Vector w = whitenedError(c);
 | |
|     return 0.5 * w.dot(w);
 | |
|   }
 | |
| 
 | |
|   /** get the dimension of the factor (number of rows on linearization) */
 | |
|   size_t dim() const {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /** Vector of errors, whitened ! */
 | |
|   Vector whitenedError(const Values& c) const {
 | |
|     return RInvSqrt(c.at<T>(key()))*unwhitenedError(c);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Linearize a nonlinearFactor1 measurement factor into a GaussianFactor
 | |
|    * Ax-b \approx h(x1+dx1)-z = h(x1) + A1*dx1 - z
 | |
|    * Hence b = z - h(x1) = - error_vector(x)
 | |
|    */
 | |
|   boost::shared_ptr<GaussianFactor> linearize(const Values& c, const Ordering& ordering) const {
 | |
|     const X& x1 = c.at<X>(key());
 | |
|     Matrix A1;
 | |
|     Vector b = -evaluateError(x1, A1);
 | |
|     const Index var1 = ordering[key()];
 | |
|     SharedDiagonal constrained =
 | |
|         boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
 | |
|     if (constrained.get() != NULL) {
 | |
|       return JacobianFactor::shared_ptr(new JacobianFactor(var1, A1, b, constrained));
 | |
|     }
 | |
|     // "Whiten" the system before converting to a Gaussian Factor
 | |
|     Matrix Rinvsqrt = RInvSqrt(x1);
 | |
|     A1 = Rinvsqrt*A1;
 | |
|     b = Rinvsqrt*b;
 | |
|     return GaussianFactor::shared_ptr(new JacobianFactor(var1, A1, b, noiseModel::Unit::Create(b.size())));
 | |
|   }
 | |
| 
 | |
|   /** vector of errors */
 | |
|   Vector evaluateError(const T& p, boost::optional<Matrix&> H1 = boost::none) const {
 | |
|     // error = z - h(p)
 | |
|     // H = d error / d p = -d h/ d p = -H
 | |
|     Vector z_hat = h(p);
 | |
| 
 | |
|     if(H1){
 | |
|       *H1 = -H(p);
 | |
|     }
 | |
| 
 | |
|     // Return the error between the prediction and the supplied value of p2
 | |
|     return z_ - z_hat;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ExtendedKalmanFilter, nonlinear ) {
 | |
| 
 | |
|   // Create the set of expected output TestValues (generated using Matlab Kalman Filter)
 | |
|   Point2 expected_predict[10];
 | |
|   Point2 expected_update[10];
 | |
|   expected_predict[0] = Point2(0.81,0.99);
 | |
|   expected_update[0] =  Point2(0.824926197027,0.29509808);
 | |
|   expected_predict[1] = Point2(0.680503230541,0.24343413);
 | |
|   expected_update[1] =  Point2(0.773360464065,0.43518355);
 | |
|   expected_predict[2] = Point2(0.598086407378,0.33655375);
 | |
|   expected_update[2] =  Point2(0.908781566884,0.60766713);
 | |
|   expected_predict[3] = Point2(0.825883936308,0.55223668);
 | |
|   expected_update[3] =  Point2(1.23221370495,0.74372849);
 | |
|   expected_predict[4] = Point2(1.51835061468,0.91643243);
 | |
|   expected_update[4] =  Point2(1.32823362774,0.855855);
 | |
|   expected_predict[5] = Point2(1.76420456986,1.1367754);
 | |
|   expected_update[5] =  Point2(1.36378040243,1.0623832);
 | |
|   expected_predict[6] = Point2(1.85989698605,1.4488574);
 | |
|   expected_update[6] =  Point2(1.24068063304,1.3431964);
 | |
|   expected_predict[7] = Point2(1.53928843321,1.6664778);
 | |
|   expected_update[7] =  Point2(1.04229257957,1.4856408);
 | |
|   expected_predict[8] = Point2(1.08637382142,1.5484724);
 | |
|   expected_update[8] =  Point2(1.13201933157,1.5795507);
 | |
|   expected_predict[9] = Point2(1.28146776705,1.7880819);
 | |
|   expected_update[9] =  Point2(1.22159588179,1.7434982);
 | |
| 
 | |
|   // Measurements
 | |
|   double z[10];
 | |
|   z[0] =  1.0;
 | |
|   z[1] =  2.0;
 | |
|   z[2] =  3.0;
 | |
|   z[3] =  4.0;
 | |
|   z[4] =  5.0;
 | |
|   z[5] =  6.0;
 | |
|   z[6] =  7.0;
 | |
|   z[7] =  8.0;
 | |
|   z[8] =  9.0;
 | |
|   z[9] = 10.0;
 | |
| 
 | |
|   // Create the Kalman Filter initialization point
 | |
|   Point2 x_initial(0.90, 1.10);
 | |
|   SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
 | |
| 
 | |
|   // Create an ExtendedKalmanFilter object
 | |
|   ExtendedKalmanFilter<Point2> ekf(X(0), x_initial, P_initial);
 | |
| 
 | |
|   // Enter Predict-Update Loop
 | |
|   Point2 x_predict, x_update;
 | |
|   for(unsigned int i = 0; i < 10; ++i){
 | |
|     // Create motion factor
 | |
|     NonlinearMotionModel motionFactor(X(i), X(i+1));
 | |
|     x_predict = ekf.predict(motionFactor);
 | |
| 
 | |
|     // Create a measurement factor
 | |
|     NonlinearMeasurementModel measurementFactor(X(i+1), Vector_(1, z[i]));
 | |
|     x_update = ekf.update(measurementFactor);
 | |
| 
 | |
|     EXPECT(assert_equal(expected_predict[i],x_predict, 1e-6));
 | |
|     EXPECT(assert_equal(expected_update[i], x_update,  1e-6));
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |