202 lines
6.1 KiB
C++
202 lines
6.1 KiB
C++
/**
|
|
* @file Rot3.cpp
|
|
* @brief Rotation (internal: 3*3 matrix representation*)
|
|
* @author Alireza Fathi
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include "Rot3.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
bool Rot3::equals(const Rot3 & R, double tol) const {
|
|
return equal_with_abs_tol(matrix(), R.matrix(), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::exmap(const Vector& v) const {
|
|
if (zero(v)) return (*this);
|
|
return rodriguez(v) * (*this);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector Rot3::vector() const {
|
|
double r[] = { r1_.x(), r1_.y(), r1_.z(),
|
|
r2_.x(), r2_.y(), r2_.z(),
|
|
r3_.x(), r3_.y(), r3_.z() };
|
|
Vector v(9);
|
|
copy(r,r+9,v.begin());
|
|
return v;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Rot3::matrix() const {
|
|
double r[] = { r1_.x(), r2_.x(), r3_.x(),
|
|
r1_.y(), r2_.y(), r3_.y(),
|
|
r1_.z(), r2_.z(), r3_.z() };
|
|
return Matrix_(3,3, r);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Rot3::transpose() const {
|
|
double r[] = { r1_.x(), r1_.y(), r1_.z(),
|
|
r2_.x(), r2_.y(), r2_.z(),
|
|
r3_.x(), r3_.y(), r3_.z()};
|
|
return Matrix_(3,3, r);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::column(int index) const{
|
|
if(index == 3)
|
|
return r3_;
|
|
else if (index == 2)
|
|
return r2_;
|
|
else
|
|
return r1_; // default returns r1
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Rot3::inverse() const {
|
|
return Rot3(
|
|
r1_.x(), r1_.y(), r1_.z(),
|
|
r2_.x(), r2_.y(), r2_.z(),
|
|
r3_.x(), r3_.y(), r3_.z());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 rodriguez(const Vector& n, double t) {
|
|
double n0 = n(0), n1=n(1), n2=n(2);
|
|
double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2;
|
|
#ifndef NDEBUG
|
|
double l_n = n00+n11+n22;
|
|
if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
|
|
#endif
|
|
|
|
double ct = cos(t), st = sin(t), ct_1 = 1 - ct;
|
|
|
|
double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st;
|
|
double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2;
|
|
double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22;
|
|
|
|
Point3 r1 = Point3( ct + C00, s2 + C01, -s1 + C02);
|
|
Point3 r2 = Point3(-s2 + C01, ct + C11, s0 + C12);
|
|
Point3 r3 = Point3( s1 + C02, -s0 + C12, ct + C22);
|
|
|
|
return Rot3(r1, r2, r3);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 rodriguez(const Vector& w) {
|
|
double t = norm_2(w);
|
|
if (t < 1e-5) return Rot3();
|
|
return rodriguez(w/t, t);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 exmap(const Rot3& R, const Vector& v) {
|
|
return R.exmap(v);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 rotate(const Rot3& R, const Point3& p) {
|
|
return R * p;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Drotate1(const Rot3& R, const Point3& p) {
|
|
Point3 q = R * p;
|
|
return skewSymmetric(-q.x(), -q.y(), -q.z());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Drotate2(const Rot3& R) {
|
|
return R.matrix();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 unrotate(const Rot3& R, const Point3& p) {
|
|
return R.unrotate(p);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** see libraries/caml/geometry/math.lyx, derivative of unrotate */
|
|
/* ************************************************************************* */
|
|
Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
|
|
Point3 q = R.unrotate(p);
|
|
return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Dunrotate2(const Rot3 & R) {
|
|
return R.transpose();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles.
|
|
* The implementation is based on the algorithm in multiple view geometry
|
|
* the function returns a vector that its arguments are: thetax, thetay, thetaz in radians.
|
|
*/
|
|
/* ************************************************************************* */
|
|
Vector RQ(Matrix R) {
|
|
double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
|
|
(double) (R(2, 1)), 2.0)))); //cosX
|
|
double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow(
|
|
(double) (R(2, 1)), 2.0)))); //sinX
|
|
Matrix Qx(3, 3);
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
Qx(i, j) = 0;
|
|
|
|
Qx(0, 0) = 1;
|
|
Qx(1, 1) = Cx;
|
|
Qx(1, 2) = -Sx;
|
|
Qx(2, 1) = Sx;
|
|
Qx(2, 2) = Cx;
|
|
R = R * Qx;
|
|
double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
|
|
2, 0)), 2.0))); //cosY
|
|
double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R(
|
|
2, 0)), 2.0))); //sinY
|
|
Matrix Qy(3, 3);
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
Qy(i, j) = 0;
|
|
|
|
Qy(0, 0) = Cy;
|
|
Qy(0, 2) = Sy;
|
|
Qy(1, 1) = 1;
|
|
Qy(2, 0) = -Sy;
|
|
Qy(2, 2) = Cy;
|
|
R = R * Qy;
|
|
double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R(
|
|
1, 0)), 2.0))); //cosZ
|
|
double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow(
|
|
(double) (R(1, 0)), 2.0)));//sinZ
|
|
Matrix Qz(3, 3);
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
Qz(i, j) = 0;
|
|
Qz(0, 0) = Cz;
|
|
Qz(0, 1) = -Sz;
|
|
Qz(1, 0) = Sz;
|
|
Qz(1, 1) = Cz;
|
|
Qz(2, 2) = 1;
|
|
R = R * Qz;
|
|
double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0;
|
|
|
|
Vector result(3);
|
|
result(0) = -atan2(Sx, Cx);
|
|
result(1) = -atan2(Sy, Cy);
|
|
result(2) = -atan2(Sz, Cz);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|