/** * @file Rot3.cpp * @brief Rotation (internal: 3*3 matrix representation*) * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert */ #include "Rot3.h" using namespace std; namespace gtsam { /* ************************************************************************* */ bool Rot3::equals(const Rot3 & R, double tol) const { return equal_with_abs_tol(matrix(), R.matrix(), tol); } /* ************************************************************************* */ Rot3 Rot3::exmap(const Vector& v) const { if (zero(v)) return (*this); return rodriguez(v) * (*this); } /* ************************************************************************* */ Vector Rot3::vector() const { double r[] = { r1_.x(), r1_.y(), r1_.z(), r2_.x(), r2_.y(), r2_.z(), r3_.x(), r3_.y(), r3_.z() }; Vector v(9); copy(r,r+9,v.begin()); return v; } /* ************************************************************************* */ Matrix Rot3::matrix() const { double r[] = { r1_.x(), r2_.x(), r3_.x(), r1_.y(), r2_.y(), r3_.y(), r1_.z(), r2_.z(), r3_.z() }; return Matrix_(3,3, r); } /* ************************************************************************* */ Matrix Rot3::transpose() const { double r[] = { r1_.x(), r1_.y(), r1_.z(), r2_.x(), r2_.y(), r2_.z(), r3_.x(), r3_.y(), r3_.z()}; return Matrix_(3,3, r); } /* ************************************************************************* */ Point3 Rot3::column(int index) const{ if(index == 3) return r3_; else if (index == 2) return r2_; else return r1_; // default returns r1 } /* ************************************************************************* */ Rot3 Rot3::inverse() const { return Rot3( r1_.x(), r1_.y(), r1_.z(), r2_.x(), r2_.y(), r2_.z(), r3_.x(), r3_.y(), r3_.z()); } /* ************************************************************************* */ Rot3 rodriguez(const Vector& n, double t) { double n0 = n(0), n1=n(1), n2=n(2); double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2; #ifndef NDEBUG double l_n = n00+n11+n22; if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1"); #endif double ct = cos(t), st = sin(t), ct_1 = 1 - ct; double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st; double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2; double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22; Point3 r1 = Point3( ct + C00, s2 + C01, -s1 + C02); Point3 r2 = Point3(-s2 + C01, ct + C11, s0 + C12); Point3 r3 = Point3( s1 + C02, -s0 + C12, ct + C22); return Rot3(r1, r2, r3); } /* ************************************************************************* */ Rot3 rodriguez(const Vector& w) { double t = norm_2(w); if (t < 1e-5) return Rot3(); return rodriguez(w/t, t); } /* ************************************************************************* */ Rot3 exmap(const Rot3& R, const Vector& v) { return R.exmap(v); } /* ************************************************************************* */ Point3 rotate(const Rot3& R, const Point3& p) { return R * p; } /* ************************************************************************* */ Matrix Drotate1(const Rot3& R, const Point3& p) { Point3 q = R * p; return skewSymmetric(-q.x(), -q.y(), -q.z()); } /* ************************************************************************* */ Matrix Drotate2(const Rot3& R) { return R.matrix(); } /* ************************************************************************* */ Point3 unrotate(const Rot3& R, const Point3& p) { return R.unrotate(p); } /* ************************************************************************* */ /** see libraries/caml/geometry/math.lyx, derivative of unrotate */ /* ************************************************************************* */ Matrix Dunrotate1(const Rot3 & R, const Point3 & p) { Point3 q = R.unrotate(p); return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose(); } /* ************************************************************************* */ Matrix Dunrotate2(const Rot3 & R) { return R.transpose(); } /* ************************************************************************* */ /** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles. * The implementation is based on the algorithm in multiple view geometry * the function returns a vector that its arguments are: thetax, thetay, thetaz in radians. */ /* ************************************************************************* */ Vector RQ(Matrix R) { double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( (double) (R(2, 1)), 2.0)))); //cosX double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( (double) (R(2, 1)), 2.0)))); //sinX Matrix Qx(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qx(i, j) = 0; Qx(0, 0) = 1; Qx(1, 1) = Cx; Qx(1, 2) = -Sx; Qx(2, 1) = Sx; Qx(2, 2) = Cx; R = R * Qx; double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( 2, 0)), 2.0))); //cosY double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( 2, 0)), 2.0))); //sinY Matrix Qy(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qy(i, j) = 0; Qy(0, 0) = Cy; Qy(0, 2) = Sy; Qy(1, 1) = 1; Qy(2, 0) = -Sy; Qy(2, 2) = Cy; R = R * Qy; double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R( 1, 0)), 2.0))); //cosZ double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow( (double) (R(1, 0)), 2.0)));//sinZ Matrix Qz(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qz(i, j) = 0; Qz(0, 0) = Cz; Qz(0, 1) = -Sz; Qz(1, 0) = Sz; Qz(1, 1) = Cz; Qz(2, 2) = 1; R = R * Qz; double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0; Vector result(3); result(0) = -atan2(Sx, Cx); result(1) = -atan2(Sy, Cy); result(2) = -atan2(Sz, Cz); return result; } /* ************************************************************************* */ } // namespace gtsam