455 lines
16 KiB
C++
455 lines
16 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartProjectionFactorTesting.cpp
|
|
* @brief Example usage of SmartProjectionFactor using real datasets
|
|
* @date August, 2013
|
|
* @author Luca Carlone
|
|
*/
|
|
|
|
#ifdef DEVELOP
|
|
|
|
// Use a map to store landmark/smart factor pairs
|
|
#include <gtsam/base/FastMap.h>
|
|
|
|
// Both relative poses and recovered trajectory poses will be stored as Pose3 objects
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/geometry/Cal3Bundler.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
|
// Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// We want to use iSAM2 to solve the range-SLAM problem incrementally
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
|
|
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
|
|
// and initial guesses for any new variables used in the added factors
|
|
#include <gtsam/nonlinear/Values.h>
|
|
|
|
// We will use a non-linear solver to batch-initialize from the first 150 frames
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
|
// have been provided with the library for solving robotics SLAM problems.
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
|
|
#include <gtsam_unstable/slam/GenericProjectionFactorsCreator.h>
|
|
|
|
// Standard headers, added last, so we know headers above work on their own
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/assign.hpp>
|
|
#include <boost/assign/std/vector.hpp>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
namespace NM = gtsam::noiseModel;
|
|
|
|
#define USE_BUNDLER
|
|
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
typedef PriorFactor<Pose3> Pose3Prior;
|
|
typedef FastMap<Key, int> OrderingMap;
|
|
|
|
#ifdef USE_BUNDLER
|
|
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> SmartFactorsCreator;
|
|
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> ProjectionFactorsCreator;
|
|
#else
|
|
typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3_S2> SmartFactorsCreator;
|
|
typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3_S2> ProjectionFactorsCreator;
|
|
#endif
|
|
|
|
bool debug = false;
|
|
|
|
// Write key values to file
|
|
void writeValues(string directory_, const Values& values){
|
|
string filename = directory_ + "out_camera_poses.txt";
|
|
ofstream fout;
|
|
fout.open(filename.c_str());
|
|
fout.precision(20);
|
|
|
|
// write out camera poses
|
|
BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, values.filter<Pose3>()) {
|
|
fout << Symbol(key_value.key).index();
|
|
const gtsam::Matrix& matrix= key_value.value.matrix();
|
|
for (size_t row=0; row < 4; ++row) {
|
|
for (size_t col=0; col < 4; ++col) {
|
|
fout << " " << matrix(row, col);
|
|
}
|
|
}
|
|
fout << endl;
|
|
}
|
|
fout.close();
|
|
|
|
if(values.filter<Point3>().size() > 0) {
|
|
// write landmarks
|
|
filename = directory_ + "landmarks.txt";
|
|
fout.open(filename.c_str());
|
|
|
|
BOOST_FOREACH(Values::ConstFiltered<Point3>::value_type key_value, values.filter<Point3>()) {
|
|
fout << Symbol(key_value.key).index();
|
|
fout << " " << key_value.value.x();
|
|
fout << " " << key_value.value.y();
|
|
fout << " " << key_value.value.z();
|
|
fout << endl;
|
|
}
|
|
fout.close();
|
|
} // end of if on landmarks
|
|
|
|
}
|
|
|
|
void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
|
|
// Optimization parameters
|
|
LevenbergMarquardtParams params;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
params.lambdaInitial = 1;
|
|
params.lambdaFactor = 10;
|
|
// Profile a single iteration
|
|
// params.maxIterations = 1;
|
|
params.maxIterations = 100;
|
|
std::cout << " LM max iterations: " << params.maxIterations << std::endl;
|
|
// // params.relativeErrorTol = 1e-5;
|
|
params.absoluteErrorTol = 1.0;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
|
|
|
|
cout << "Graph size: " << graph.size() << endl;
|
|
cout << "Number of variables: " << graphValues->size() << endl;
|
|
std::cout << " OPTIMIZATION " << std::endl;
|
|
|
|
if (debug) {
|
|
std::cout << "\n\n=================================================\n\n";
|
|
graph.print("thegraph");
|
|
}
|
|
std::cout << "\n\n=================================================\n\n";
|
|
|
|
if (ordering && ordering->size() > 0) {
|
|
if (debug) {
|
|
std::cout << "Have an ordering\n" << std::endl;
|
|
BOOST_FOREACH(const Key& key, *ordering) {
|
|
std::cout << key << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
params.ordering = *ordering;
|
|
|
|
//for (int i = 0; i < 3; i++) {
|
|
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
|
gttic_(GenericProjectionFactorExample_kitti);
|
|
result = optimizer.optimize();
|
|
gttoc_(GenericProjectionFactorExample_kitti);
|
|
tictoc_finishedIteration_();
|
|
//}
|
|
} else {
|
|
std::cout << "Using COLAMD ordering\n" << std::endl;
|
|
//boost::shared_ptr<Ordering> ordering2(new Ordering()); ordering = ordering2;
|
|
|
|
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
|
params.ordering = Ordering::COLAMD(graph);
|
|
gttic_(SmartProjectionFactorExample_kitti);
|
|
result = optimizer.optimize();
|
|
gttoc_(SmartProjectionFactorExample_kitti);
|
|
tictoc_finishedIteration_();
|
|
|
|
std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl;
|
|
std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl;
|
|
|
|
//*ordering = params.ordering;
|
|
if (params.ordering) {
|
|
std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl;
|
|
ordering = boost::make_shared<Ordering>(*(new Ordering()));
|
|
*ordering = *params.ordering;
|
|
} else {
|
|
std::cout << "WARNING: NULL ordering!" << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
|
GaussNewtonParams params;
|
|
//params.maxIterations = 1;
|
|
params.verbosity = NonlinearOptimizerParams::DELTA;
|
|
|
|
GaussNewtonOptimizer optimizer(graph, *graphValues, params);
|
|
gttic_(SmartProjectionFactorExample_kitti);
|
|
result = optimizer.optimize();
|
|
gttoc_(SmartProjectionFactorExample_kitti);
|
|
tictoc_finishedIteration_();
|
|
|
|
}
|
|
|
|
void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
|
ISAM2 isam;
|
|
gttic_(SmartProjectionFactorExample_kitti);
|
|
isam.update(graph, *graphValues);
|
|
result = isam.calculateEstimate();
|
|
gttoc_(SmartProjectionFactorExample_kitti);
|
|
tictoc_finishedIteration_();
|
|
}
|
|
|
|
// main
|
|
int main(int argc, char** argv) {
|
|
|
|
// Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
|
|
bool useSmartProjectionFactor = true;
|
|
bool doTriangulation = true; // we read points initial guess from file or we triangulate
|
|
|
|
bool useLM = true;
|
|
bool addNoise = false;
|
|
|
|
// Smart factors settings
|
|
double linThreshold = -1.0; // negative is disabled
|
|
double rankTolerance = 1.0;
|
|
|
|
// Get home directory and dataset
|
|
string HOME = getenv("HOME");
|
|
string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt";
|
|
|
|
if(argc>1){ // if we have any input arguments
|
|
string useSmartArgument = argv[1];
|
|
string useTriangulationArgument = argv[2];
|
|
datasetFile = argv[3];
|
|
|
|
if(useSmartArgument.compare("smart")==0){
|
|
useSmartProjectionFactor=true;
|
|
} else{
|
|
if(useSmartArgument.compare("standard")==0){
|
|
useSmartProjectionFactor=false;
|
|
}else{
|
|
cout << "Selected wrong option for input argument - useSmartProjectionFactor" << endl;
|
|
exit(1);
|
|
}
|
|
}
|
|
if(useTriangulationArgument.compare("do")==0){
|
|
doTriangulation=true;
|
|
} else{
|
|
if(useTriangulationArgument.compare("dont")==0){
|
|
doTriangulation=false;
|
|
}else{
|
|
cout << "Selected wrong option for input argument - doTriangulation - not important for SmartFactors" << endl;
|
|
}
|
|
}
|
|
}
|
|
std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
|
|
std::cout << "PARAM doTriangulation: " << doTriangulation << std::endl;
|
|
// std::cout << "PARAM LM: " << useLM << std::endl;
|
|
std::cout << "PARAM linThreshold (negative is disabled): " << linThreshold << std::endl;
|
|
if(addNoise)
|
|
std::cout << "PARAM Noise: " << addNoise << std::endl;
|
|
|
|
std::cout << "datasetFile: " << datasetFile << std::endl;
|
|
|
|
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
|
|
NonlinearFactorGraph graphSmart, graphProjection;
|
|
|
|
gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
|
|
gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
|
|
gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file
|
|
Values result;
|
|
|
|
// Read in kitti dataset
|
|
ifstream fin;
|
|
fin.open((datasetFile).c_str());
|
|
if(!fin) {
|
|
cerr << "Could not open dataset" << endl;
|
|
exit(1);
|
|
}
|
|
|
|
// read all measurements
|
|
cout << "Reading dataset... " << endl;
|
|
unsigned int numLandmarks = 0, numPoses = 0;
|
|
Key r, l;
|
|
double u, v;
|
|
double x, y, z, rotx, roty, rotz, f, k1, k2;
|
|
std::vector<Key> landmarkKeys, cameraPoseKeys;
|
|
|
|
bool optimized = false;
|
|
boost::shared_ptr<Ordering> ordering(new Ordering());
|
|
|
|
#ifdef USE_BUNDLER
|
|
std::vector< boost::shared_ptr<Cal3Bundler> > K_cameras;
|
|
boost::shared_ptr<Cal3Bundler> K(new Cal3Bundler());
|
|
#else
|
|
std::vector< boost::shared_ptr<Cal3_S2> > K_cameras;
|
|
Cal3_S2::shared_ptr K(new Cal3_S2());
|
|
#endif
|
|
|
|
SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used
|
|
ProjectionFactorsCreator projectionCreator(pixel_sigma, K); // this initial K is not used
|
|
|
|
// main loop: reads measurements and adds factors (also performs optimization if desired)
|
|
// r >> pose id
|
|
// l >> landmark id
|
|
// (u >> u) >> measurement
|
|
unsigned int totNumLandmarks=0, totNumPoses=0, totNumMeasurements=0;
|
|
fin >> totNumPoses >> totNumLandmarks >> totNumMeasurements;
|
|
|
|
cout << "Dataset: #poses: " << totNumPoses << " #points: " << totNumLandmarks << " #measurements: " << totNumMeasurements << " " << endl;
|
|
|
|
std::vector<double> vector_u;
|
|
std::vector<double> vector_v;
|
|
std::vector<int> vector_r;
|
|
std::vector<int> vector_l;
|
|
|
|
// read measurements
|
|
for(unsigned int i = 0; i < totNumMeasurements; i++){
|
|
fin >> r >> l >> u >> v;
|
|
vector_u.push_back(u);
|
|
vector_v.push_back(v);
|
|
vector_r.push_back(r);
|
|
vector_l.push_back(l);
|
|
}
|
|
|
|
cout << "last measurement: " << r << " " << l << " " << u << " " << v << endl;
|
|
|
|
// create values
|
|
for(unsigned int i = 0; i < totNumPoses; i++){
|
|
// R,t,f,k1 and k2.
|
|
fin >> rotx >> roty >> rotz >> x >> y >> z >> f >> k1 >> k2;
|
|
#ifdef USE_BUNDLER
|
|
boost::shared_ptr<Cal3Bundler> Kbundler(new Cal3Bundler(f, k1, k2, 0.0, 0.0));
|
|
// cout << k1 << " " << k2 << endl;
|
|
K_cameras.push_back(Kbundler);
|
|
#else
|
|
boost::shared_ptr<Cal3_S2> K_S2(new Cal3_S2(f, f, 0.0, 0.0, 0.0));
|
|
K_cameras.push_back(K_S2);
|
|
#endif
|
|
Vector3 rotVect(rotx,roty,rotz);
|
|
// FORMAT CONVERSION!! R -> R'
|
|
Rot3 R = Rot3::Expmap(rotVect);
|
|
Matrix3 R_bal_gtsam_mat = Matrix3::Zero(3,3);
|
|
R_bal_gtsam_mat(0,0) = 1.0; R_bal_gtsam_mat(1,1) = -1.0; R_bal_gtsam_mat(2,2) = -1.0;
|
|
Rot3 R_bal_gtsam_ = Rot3(R_bal_gtsam_mat);
|
|
Pose3 CameraPose((R.inverse()).compose(R_bal_gtsam_), - R.unrotate(Point3(x,y,z)));
|
|
|
|
if(addNoise){
|
|
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3));
|
|
CameraPose = CameraPose.compose(noise_pose);
|
|
}
|
|
loadedValues->insert(X(i), CameraPose );
|
|
}
|
|
|
|
cout << "last pose: " << x << " " << y << " " << z << " " << rotx << " "
|
|
<< roty << " " << rotz << " " << f << " " << k1 << " " << k2 << endl;
|
|
|
|
// add landmarks in standard projection factors
|
|
if(!useSmartProjectionFactor){
|
|
for(unsigned int i = 0; i < totNumLandmarks; i++){
|
|
fin >> x >> y >> z;
|
|
// FORMAT CONVERSION!! XPOINT
|
|
loadedValues->insert(L(i), Point3(x,y,z) );
|
|
}
|
|
}
|
|
|
|
cout << "last point: " << x << " " << y << " " << z << endl;
|
|
|
|
// 1: add values and factors to the graph
|
|
// 1.1: add factors
|
|
// SMART FACTORS ..
|
|
for(size_t i = 0; i < vector_u.size(); i++){
|
|
|
|
l = vector_l.at(i);
|
|
r = vector_r.at(i);
|
|
// FORMAT CONVERSION!! XPOINT
|
|
u = vector_u.at(i);
|
|
// FORMAT CONVERSION!! XPOINT
|
|
v = - vector_v.at(i);
|
|
|
|
if (useSmartProjectionFactor) {
|
|
|
|
smartCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphSmart);
|
|
numLandmarks = smartCreator.getNumLandmarks();
|
|
|
|
// Add initial pose value if pose does not exist
|
|
if (!graphSmartValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
|
|
graphSmartValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
|
|
numPoses++;
|
|
optimized = false;
|
|
}
|
|
|
|
} else {
|
|
// or STANDARD PROJECTION FACTORS
|
|
projectionCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphProjection);
|
|
numLandmarks = projectionCreator.getNumLandmarks();
|
|
optimized = false;
|
|
}
|
|
}
|
|
|
|
cout << "Before call to update: ------------------ " << endl;
|
|
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
|
|
Values valuesProjPoses = graphProjectionValues->filter<Pose3>();
|
|
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
|
|
Values valuesProjPoints = graphProjectionValues->filter<Point3>();
|
|
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
|
|
cout << "---------------------------------------------------------- " << endl;
|
|
|
|
if (!useSmartProjectionFactor) {
|
|
projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation);
|
|
// graphProjectionValues = loadedValues;
|
|
ordering = projectionCreator.getOrdering();
|
|
}
|
|
|
|
cout << "After call to update: ------------------ " << endl;
|
|
cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
|
|
valuesProjPoses = graphProjectionValues->filter<Pose3>();
|
|
cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
|
|
valuesProjPoints = graphProjectionValues->filter<Point3>();
|
|
cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
|
|
cout << "---------------------------------------------------------- " << endl;
|
|
|
|
if (useSmartProjectionFactor) {
|
|
if (useLM)
|
|
optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
|
|
else
|
|
optimizeGraphISAM2(graphSmart, graphSmartValues, result);
|
|
|
|
cout << "Final reprojection error (smart): " << graphSmart.error(result);
|
|
} else {
|
|
if (useLM)
|
|
optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering);
|
|
else
|
|
optimizeGraphISAM2(graphProjection, graphProjectionValues, result); // ?
|
|
|
|
cout << "Final reprojection error (standard): " << graphProjection.error(result);
|
|
}
|
|
|
|
optimized = true;
|
|
|
|
cout << "===================================================" << endl;
|
|
tictoc_print_();
|
|
cout << "===================================================" << endl;
|
|
writeValues("./", result);
|
|
|
|
if (debug) cout << numLandmarks << " " << numPoses << " " << optimized << endl;
|
|
|
|
exit(0);
|
|
}
|
|
|
|
#endif
|
|
|
|
int main(){
|
|
return 1;
|
|
}
|
|
|
|
|