/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SmartProjectionFactorTesting.cpp * @brief Example usage of SmartProjectionFactor using real datasets * @date August, 2013 * @author Luca Carlone */ #ifdef DEVELOP // Use a map to store landmark/smart factor pairs #include // Both relative poses and recovered trajectory poses will be stored as Pose3 objects #include #include #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // We want to use iSAM2 to solve the range-SLAM problem incrementally #include // iSAM2 requires as input a set set of new factors to be added stored in a factor graph, // and initial guesses for any new variables used in the added factors #include // We will use a non-linear solver to batch-initialize from the first 150 frames #include #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics SLAM problems. #include #include #include // Standard headers, added last, so we know headers above work on their own #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; namespace NM = gtsam::noiseModel; #define USE_BUNDLER using symbol_shorthand::X; using symbol_shorthand::L; typedef PriorFactor Pose3Prior; typedef FastMap OrderingMap; #ifdef USE_BUNDLER typedef SmartProjectionFactorsCreator SmartFactorsCreator; typedef GenericProjectionFactorsCreator ProjectionFactorsCreator; #else typedef SmartProjectionFactorsCreator SmartFactorsCreator; typedef GenericProjectionFactorsCreator ProjectionFactorsCreator; #endif bool debug = false; // Write key values to file void writeValues(string directory_, const Values& values){ string filename = directory_ + "out_camera_poses.txt"; ofstream fout; fout.open(filename.c_str()); fout.precision(20); // write out camera poses BOOST_FOREACH(Values::ConstFiltered::value_type key_value, values.filter()) { fout << Symbol(key_value.key).index(); const gtsam::Matrix& matrix= key_value.value.matrix(); for (size_t row=0; row < 4; ++row) { for (size_t col=0; col < 4; ++col) { fout << " " << matrix(row, col); } } fout << endl; } fout.close(); if(values.filter().size() > 0) { // write landmarks filename = directory_ + "landmarks.txt"; fout.open(filename.c_str()); BOOST_FOREACH(Values::ConstFiltered::value_type key_value, values.filter()) { fout << Symbol(key_value.key).index(); fout << " " << key_value.value.x(); fout << " " << key_value.value.y(); fout << " " << key_value.value.z(); fout << endl; } fout.close(); } // end of if on landmarks } void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr &ordering) { // Optimization parameters LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; params.lambdaInitial = 1; params.lambdaFactor = 10; // Profile a single iteration // params.maxIterations = 1; params.maxIterations = 100; std::cout << " LM max iterations: " << params.maxIterations << std::endl; // // params.relativeErrorTol = 1e-5; params.absoluteErrorTol = 1.0; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY; cout << "Graph size: " << graph.size() << endl; cout << "Number of variables: " << graphValues->size() << endl; std::cout << " OPTIMIZATION " << std::endl; if (debug) { std::cout << "\n\n=================================================\n\n"; graph.print("thegraph"); } std::cout << "\n\n=================================================\n\n"; if (ordering && ordering->size() > 0) { if (debug) { std::cout << "Have an ordering\n" << std::endl; BOOST_FOREACH(const Key& key, *ordering) { std::cout << key << " "; } std::cout << std::endl; } params.ordering = *ordering; //for (int i = 0; i < 3; i++) { LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); gttic_(GenericProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(GenericProjectionFactorExample_kitti); tictoc_finishedIteration_(); //} } else { std::cout << "Using COLAMD ordering\n" << std::endl; //boost::shared_ptr ordering2(new Ordering()); ordering = ordering2; LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); params.ordering = Ordering::COLAMD(graph); gttic_(SmartProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); std::cout << "Number of outer LM iterations: " << optimizer.state().iterations << std::endl; std::cout << "Total number of LM iterations (inner and outer): " << optimizer.getInnerIterations() << std::endl; //*ordering = params.ordering; if (params.ordering) { std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl; ordering = boost::make_shared(*(new Ordering())); *ordering = *params.ordering; } else { std::cout << "WARNING: NULL ordering!" << std::endl; } } } void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { GaussNewtonParams params; //params.maxIterations = 1; params.verbosity = NonlinearOptimizerParams::DELTA; GaussNewtonOptimizer optimizer(graph, *graphValues, params); gttic_(SmartProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); } void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { ISAM2 isam; gttic_(SmartProjectionFactorExample_kitti); isam.update(graph, *graphValues); result = isam.calculateEstimate(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); } // main int main(int argc, char** argv) { // Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used bool useSmartProjectionFactor = true; bool doTriangulation = true; // we read points initial guess from file or we triangulate bool useLM = true; bool addNoise = false; // Smart factors settings double linThreshold = -1.0; // negative is disabled double rankTolerance = 1.0; // Get home directory and dataset string HOME = getenv("HOME"); string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt"; if(argc>1){ // if we have any input arguments string useSmartArgument = argv[1]; string useTriangulationArgument = argv[2]; datasetFile = argv[3]; if(useSmartArgument.compare("smart")==0){ useSmartProjectionFactor=true; } else{ if(useSmartArgument.compare("standard")==0){ useSmartProjectionFactor=false; }else{ cout << "Selected wrong option for input argument - useSmartProjectionFactor" << endl; exit(1); } } if(useTriangulationArgument.compare("do")==0){ doTriangulation=true; } else{ if(useTriangulationArgument.compare("dont")==0){ doTriangulation=false; }else{ cout << "Selected wrong option for input argument - doTriangulation - not important for SmartFactors" << endl; } } } std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl; std::cout << "PARAM doTriangulation: " << doTriangulation << std::endl; // std::cout << "PARAM LM: " << useLM << std::endl; std::cout << "PARAM linThreshold (negative is disabled): " << linThreshold << std::endl; if(addNoise) std::cout << "PARAM Noise: " << addNoise << std::endl; std::cout << "datasetFile: " << datasetFile << std::endl; static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2)); NonlinearFactorGraph graphSmart, graphProjection; gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values()); gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values()); gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file Values result; // Read in kitti dataset ifstream fin; fin.open((datasetFile).c_str()); if(!fin) { cerr << "Could not open dataset" << endl; exit(1); } // read all measurements cout << "Reading dataset... " << endl; unsigned int numLandmarks = 0, numPoses = 0; Key r, l; double u, v; double x, y, z, rotx, roty, rotz, f, k1, k2; std::vector landmarkKeys, cameraPoseKeys; bool optimized = false; boost::shared_ptr ordering(new Ordering()); #ifdef USE_BUNDLER std::vector< boost::shared_ptr > K_cameras; boost::shared_ptr K(new Cal3Bundler()); #else std::vector< boost::shared_ptr > K_cameras; Cal3_S2::shared_ptr K(new Cal3_S2()); #endif SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used ProjectionFactorsCreator projectionCreator(pixel_sigma, K); // this initial K is not used // main loop: reads measurements and adds factors (also performs optimization if desired) // r >> pose id // l >> landmark id // (u >> u) >> measurement unsigned int totNumLandmarks=0, totNumPoses=0, totNumMeasurements=0; fin >> totNumPoses >> totNumLandmarks >> totNumMeasurements; cout << "Dataset: #poses: " << totNumPoses << " #points: " << totNumLandmarks << " #measurements: " << totNumMeasurements << " " << endl; std::vector vector_u; std::vector vector_v; std::vector vector_r; std::vector vector_l; // read measurements for(unsigned int i = 0; i < totNumMeasurements; i++){ fin >> r >> l >> u >> v; vector_u.push_back(u); vector_v.push_back(v); vector_r.push_back(r); vector_l.push_back(l); } cout << "last measurement: " << r << " " << l << " " << u << " " << v << endl; // create values for(unsigned int i = 0; i < totNumPoses; i++){ // R,t,f,k1 and k2. fin >> rotx >> roty >> rotz >> x >> y >> z >> f >> k1 >> k2; #ifdef USE_BUNDLER boost::shared_ptr Kbundler(new Cal3Bundler(f, k1, k2, 0.0, 0.0)); // cout << k1 << " " << k2 << endl; K_cameras.push_back(Kbundler); #else boost::shared_ptr K_S2(new Cal3_S2(f, f, 0.0, 0.0, 0.0)); K_cameras.push_back(K_S2); #endif Vector3 rotVect(rotx,roty,rotz); // FORMAT CONVERSION!! R -> R' Rot3 R = Rot3::Expmap(rotVect); Matrix3 R_bal_gtsam_mat = Matrix3::Zero(3,3); R_bal_gtsam_mat(0,0) = 1.0; R_bal_gtsam_mat(1,1) = -1.0; R_bal_gtsam_mat(2,2) = -1.0; Rot3 R_bal_gtsam_ = Rot3(R_bal_gtsam_mat); Pose3 CameraPose((R.inverse()).compose(R_bal_gtsam_), - R.unrotate(Point3(x,y,z))); if(addNoise){ Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3)); CameraPose = CameraPose.compose(noise_pose); } loadedValues->insert(X(i), CameraPose ); } cout << "last pose: " << x << " " << y << " " << z << " " << rotx << " " << roty << " " << rotz << " " << f << " " << k1 << " " << k2 << endl; // add landmarks in standard projection factors if(!useSmartProjectionFactor){ for(unsigned int i = 0; i < totNumLandmarks; i++){ fin >> x >> y >> z; // FORMAT CONVERSION!! XPOINT loadedValues->insert(L(i), Point3(x,y,z) ); } } cout << "last point: " << x << " " << y << " " << z << endl; // 1: add values and factors to the graph // 1.1: add factors // SMART FACTORS .. for(size_t i = 0; i < vector_u.size(); i++){ l = vector_l.at(i); r = vector_r.at(i); // FORMAT CONVERSION!! XPOINT u = vector_u.at(i); // FORMAT CONVERSION!! XPOINT v = - vector_v.at(i); if (useSmartProjectionFactor) { smartCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphSmart); numLandmarks = smartCreator.getNumLandmarks(); // Add initial pose value if pose does not exist if (!graphSmartValues->exists(X(r)) && loadedValues->exists(X(r))) { graphSmartValues->insert(X(r), loadedValues->at(X(r))); numPoses++; optimized = false; } } else { // or STANDARD PROJECTION FACTORS projectionCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphProjection); numLandmarks = projectionCreator.getNumLandmarks(); optimized = false; } } cout << "Before call to update: ------------------ " << endl; cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl; Values valuesProjPoses = graphProjectionValues->filter(); cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl; Values valuesProjPoints = graphProjectionValues->filter(); cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl; cout << "---------------------------------------------------------- " << endl; if (!useSmartProjectionFactor) { projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation); // graphProjectionValues = loadedValues; ordering = projectionCreator.getOrdering(); } cout << "After call to update: ------------------ " << endl; cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl; valuesProjPoses = graphProjectionValues->filter(); cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl; valuesProjPoints = graphProjectionValues->filter(); cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl; cout << "---------------------------------------------------------- " << endl; if (useSmartProjectionFactor) { if (useLM) optimizeGraphLM(graphSmart, graphSmartValues, result, ordering); else optimizeGraphISAM2(graphSmart, graphSmartValues, result); cout << "Final reprojection error (smart): " << graphSmart.error(result); } else { if (useLM) optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering); else optimizeGraphISAM2(graphProjection, graphProjectionValues, result); // ? cout << "Final reprojection error (standard): " << graphProjection.error(result); } optimized = true; cout << "===================================================" << endl; tictoc_print_(); cout << "===================================================" << endl; writeValues("./", result); if (debug) cout << numLandmarks << " " << numPoses << " " << optimized << endl; exit(0); } #endif int main(){ return 1; }