427 lines
18 KiB
C++
427 lines
18 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testPlanarSLAMExample_lago.cpp
|
|
* @brief Unit tests for planar SLAM example using the initialization technique
|
|
* LAGO (Linear Approximation for Graph Optimization)
|
|
*
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
* @date May 14, 2014
|
|
*/
|
|
|
|
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
|
|
// the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
|
|
#include <gtsam/geometry/Pose2.h>
|
|
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/VectorValues.h>
|
|
|
|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
|
// Here we will use Symbols
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
|
// Here we will use a RangeBearing factor for the range-bearing measurements to identified
|
|
// landmarks, and Between factors for the relative motion described by odometry measurements.
|
|
// Also, we will initialize the robot at the origin using a Prior factor.
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
|
|
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
|
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <cmath>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
|
|
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
|
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
|
static const double PI = boost::math::constants::pi<double>();
|
|
|
|
#include <gtsam/inference/graph.h>
|
|
/**
|
|
* @brief Initialization technique for planar pose SLAM using
|
|
* LAGO (Linear Approximation for Graph Optimization). see papers:
|
|
*
|
|
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
|
|
* approximation for planar pose graph optimization, IJRR, 2014.
|
|
*
|
|
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
|
|
* for graph-based simultaneous localization and mapping, RSS, 2011.
|
|
*
|
|
* @param graph: nonlinear factor graph including between (Pose2) measurements
|
|
* @return Values: initial guess including orientation estimate from LAGO
|
|
*/
|
|
|
|
/*
|
|
* This function computes the cumulative orientation wrt the root (without wrapping)
|
|
* for a node (without wrapping). The function starts at the nodes and moves towards the root
|
|
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
|
|
*/
|
|
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
|
const map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
|
|
|
|
double nodeTheta = 0;
|
|
Key key_child = nodeKey; // the node
|
|
Key key_parent = 0; // the initialization does not matter
|
|
while(1){
|
|
// We check if we reached the root
|
|
if(tree.at(key_child)==key_child) // if we reached the root
|
|
break;
|
|
// we sum the delta theta corresponding to the edge parent->child
|
|
nodeTheta += deltaThetaMap.at(key_child);
|
|
// we get the parent
|
|
key_parent = tree.at(key_child); // the parent
|
|
// we check if we connected to some part of the tree we know
|
|
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
|
nodeTheta += thetaFromRootMap[key_parent];
|
|
break;
|
|
}
|
|
key_child = key_parent; // we move upwards in the tree
|
|
}
|
|
return nodeTheta;
|
|
}
|
|
|
|
/*
|
|
* This function computes the cumulative orientation (without wrapping)
|
|
* for all node wrt the root (root has zero orientation)
|
|
*/
|
|
map<Key, double> computeThetasToRoot(const vector<Key>& keysInBinary,
|
|
const map<Key, double>& deltaThetaMap, const PredecessorMap<Key>& tree) {
|
|
|
|
map<Key, double> thetaToRootMap;
|
|
// for all nodes in the tree
|
|
BOOST_FOREACH(const Key& nodeKey, keysInBinary) {
|
|
// compute the orientation wrt root
|
|
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
|
thetaToRootMap);
|
|
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
|
}
|
|
return thetaToRootMap;
|
|
}
|
|
|
|
/*
|
|
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
|
* and stores the factor slots corresponding to edges in the tree and to chords wrt this tree
|
|
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
|
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
|
*/
|
|
void getSymbolicSubgraph(vector<Key>& keysInBinary,
|
|
/*OUTPUTS*/ vector<size_t>& spanningTree, vector<size_t>& chords, map<Key, double>& deltaThetaMap,
|
|
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
|
|
|
// Get keys for which you want the orientation
|
|
size_t id=0;
|
|
// Loop over the factors
|
|
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
|
|
if (factor->keys().size() == 2){
|
|
Key key1 = factor->keys()[0];
|
|
Key key2 = factor->keys()[1];
|
|
|
|
// recast to a between
|
|
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
|
if (!pose2Between) continue;
|
|
|
|
// store the keys: these are the orientations we are going to estimate
|
|
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
|
|
keysInBinary.push_back(key1);
|
|
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
|
|
keysInBinary.push_back(key2);
|
|
|
|
// get the orientation - measured().theta();
|
|
double deltaTheta = pose2Between->measured().theta();
|
|
|
|
// insert (directed) orientations in the map "deltaThetaMap"
|
|
bool inTree=false;
|
|
if(tree.at(key1)==key2){
|
|
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
|
inTree = true;
|
|
} else if(tree.at(key2)==key1){
|
|
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
|
inTree = true;
|
|
}
|
|
|
|
// store factor slot, distinguishing spanning tree edges from chords
|
|
if(inTree == true)
|
|
spanningTree.push_back(id);
|
|
else // it's a chord!
|
|
chords.push_back(id);
|
|
}
|
|
id++;
|
|
}
|
|
}
|
|
|
|
// Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
|
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
|
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
|
|
|
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
|
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
|
if (!pose2Between)
|
|
throw std::invalid_argument(
|
|
"buildOrientationGraph: invalid between factor!");
|
|
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
|
// Retrieve noise model
|
|
SharedNoiseModel model = pose2Between->get_noiseModel();
|
|
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
|
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
|
if (!diagonalModel)
|
|
throw std::invalid_argument("buildOrientationGraph: invalid noise model (current version assumes diagonal noise model)!");
|
|
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
|
|
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
|
}
|
|
|
|
/*
|
|
* Linear factor graph with regularized orientation measurements
|
|
*/
|
|
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
|
|
const NonlinearFactorGraph& g, const map<Key, double>& orientationsToRoot, const PredecessorMap<Key>& tree){
|
|
|
|
GaussianFactorGraph lagoGraph;
|
|
Vector deltaTheta;
|
|
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
|
|
|
Matrix I = eye(1);
|
|
// put original measurements in the spanning tree
|
|
BOOST_FOREACH(const size_t& factorId, spanningTree){
|
|
const FastVector<Key>& keys = g[factorId]->keys();
|
|
Key key1 = keys[0], key2 = keys[1];
|
|
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
|
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
|
}
|
|
// put regularized measurements in the chords
|
|
BOOST_FOREACH(const size_t& factorId, chords){
|
|
const FastVector<Key>& keys = g[factorId]->keys();
|
|
Key key1 = keys[0], key2 = keys[1];
|
|
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
|
double key1_DeltaTheta_key2 = deltaTheta(0);
|
|
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
|
double k = round(k2pi_noise/(2*PI));
|
|
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
|
|
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
|
}
|
|
// prior on some orientation (anchor)
|
|
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
|
lagoGraph.add(JacobianFactor(tree.begin()->first, I, (Vector(1) << 0.0), model_anchor));
|
|
return lagoGraph;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
|
VectorValues initializeLago(const NonlinearFactorGraph& graph, vector<Key>& keysInBinary) {
|
|
// Find a minimum spanning tree
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(graph);
|
|
|
|
// Create a linear factor graph (LFG) of scalars
|
|
map<Key, double> deltaThetaMap;
|
|
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
|
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
|
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, graph);
|
|
|
|
// temporary structure to correct wraparounds along loops
|
|
map<Key, double> orientationsToRoot = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
|
|
|
|
// regularize measurements and plug everything in a factor graph
|
|
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, graph, orientationsToRoot, tree);
|
|
|
|
// Solve the LFG
|
|
VectorValues estimateLago = lagoGraph.optimize();
|
|
|
|
return estimateLago;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
|
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
|
|
|
|
vector<Key> keysInBinary;
|
|
return initializeLago(graph, keysInBinary);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
|
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
|
Values initialGuessLago;
|
|
|
|
// get the orientation estimates from LAGO
|
|
vector<Key> keysInBinary;
|
|
VectorValues orientations = initializeLago(graph, keysInBinary);
|
|
|
|
// plug the orientations in the initialGuess
|
|
for(size_t i=0; i<keysInBinary.size(); i++){
|
|
Key key = keysInBinary[i];
|
|
Pose2 pose = initialGuess.at<Pose2>(key);
|
|
Vector orientation = orientations.at(key);
|
|
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
|
initialGuessLago.insert(key, poseLago);
|
|
}
|
|
return initialGuessLago;
|
|
}
|
|
|
|
|
|
namespace simple {
|
|
// We consider a small graph:
|
|
// symbolic FG
|
|
// x2 0 1
|
|
// / | \ 1 2
|
|
// / | \ 2 3
|
|
// x3 | x1 2 0
|
|
// \ | / 0 3
|
|
// \ | /
|
|
// x0
|
|
//
|
|
|
|
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
|
|
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
|
|
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
|
|
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
|
|
|
|
NonlinearFactorGraph graph() {
|
|
NonlinearFactorGraph g;
|
|
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
|
|
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
|
|
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
|
|
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
|
|
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
|
|
return g;
|
|
}
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, checkSTandChords ) {
|
|
NonlinearFactorGraph g = simple::graph();
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(g);
|
|
|
|
vector<Key> keysInBinary;
|
|
map<Key, double> deltaThetaMap;
|
|
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
|
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
|
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
|
|
|
|
DOUBLES_EQUAL(spanningTree[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
|
|
DOUBLES_EQUAL(spanningTree[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
|
|
DOUBLES_EQUAL(spanningTree[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
|
|
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, orientationsOverSpanningTree ) {
|
|
NonlinearFactorGraph g = simple::graph();
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(g);
|
|
|
|
// check the tree structure
|
|
EXPECT_LONGS_EQUAL(tree[x0], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x1], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x2], x0);
|
|
EXPECT_LONGS_EQUAL(tree[x3], x0);
|
|
|
|
map<Key, double> expected;
|
|
expected[x0]= 0;
|
|
expected[x1]= PI/2; // edge x0->x1 (consistent with edge (x0,x1))
|
|
expected[x2]= -PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
|
|
expected[x3]= -PI/2; // edge x0->x3 (consistent with edge (x0,x3))
|
|
|
|
vector<Key> keysInBinary;
|
|
map<Key, double> deltaThetaMap;
|
|
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
|
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
|
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
|
|
|
|
map<Key, double> actual;
|
|
actual = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
|
|
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
|
|
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
|
|
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
|
|
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, regularizedMeasurements ) {
|
|
NonlinearFactorGraph g = simple::graph();
|
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
|
BetweenFactor<Pose2> >(g);
|
|
|
|
vector<Key> keysInBinary;
|
|
map<Key, double> deltaThetaMap;
|
|
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
|
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
|
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
|
|
|
|
map<Key, double> orientationsToRoot = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
|
|
|
|
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, g, orientationsToRoot, tree);
|
|
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
|
|
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
|
|
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
|
|
// this is the whitened error, so we multiply by the std to unwhiten
|
|
actual = 0.1 * actual;
|
|
// Expected regularized measurements (same for the spanning tree, corrected for the chords)
|
|
Vector expected = (Vector(5) << PI/2, PI, -PI/2, PI/2 - 2*PI , PI/2);
|
|
|
|
EXPECT(assert_equal(expected, actual, 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, smallGraphVectorValues ) {
|
|
|
|
VectorValues initialGuessLago = initializeLago(simple::graph());
|
|
|
|
// comparison is up to PI, that's why we add some multiples of 2*PI
|
|
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
|
EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
|
|
EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
|
|
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
|
}
|
|
|
|
/* *************************************************************************** */
|
|
TEST( Lago, smallGraphValues ) {
|
|
|
|
// we set the orientations in the initial guess to zero
|
|
Values initialGuess;
|
|
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
|
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
|
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
|
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
|
|
|
// lago does not touch the Cartesian part and only fixed the orientations
|
|
Values actual = initializeLago(simple::graph(), initialGuess);
|
|
|
|
// we are in a noiseless case
|
|
Values expected;
|
|
expected.insert(x0,simple::pose0);
|
|
expected.insert(x1,simple::pose1);
|
|
expected.insert(x2,simple::pose2);
|
|
expected.insert(x3,simple::pose3);
|
|
|
|
EXPECT(assert_equal(expected, actual, 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|