gtsam/gtsam_unstable/linear/QPSolver.cpp

152 lines
5.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file QPSolver.cpp
* @brief
* @date Apr 15, 2014
* @author Duy-Nguyen Ta
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/FactorGraph-inst.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <gtsam_unstable/linear/LPSolver.h>
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
#include <boost/range/adaptor/map.hpp>
#include <gtsam_unstable/linear/LPInitSolver.h>
using namespace std;
namespace gtsam {
//******************************************************************************
QPSolver::QPSolver(const QP& qp) :
ActiveSetSolver(1.0), qp_(qp) {
equalityVariableIndex_ = VariableIndex(qp_.equalities);
inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
constrainedKeys_ = qp_.equalities.keys();
constrainedKeys_.merge(qp_.inequalities.keys());
}
//***************************************************cc***************************
VectorValues QPSolver::solveWithCurrentWorkingSet(
const InequalityFactorGraph& workingSet) const {
GaussianFactorGraph workingGraph = qp_.cost;
workingGraph.push_back(qp_.equalities);
for (const LinearInequality::shared_ptr& factor : workingSet) {
if (factor->active())
workingGraph.push_back(factor);
}
return workingGraph.optimize();
}
//******************************************************************************
JacobianFactor::shared_ptr QPSolver::createDualFactor(
Key key, const InequalityFactorGraph& workingSet,
const VectorValues& delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the
// dual key
TermsContainer Aterms = collectDualJacobians<LinearEquality>(
key, qp_.equalities, equalityVariableIndex_);
TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = qp_.costGradient(key, delta);
// to compute the least-square approximation of dual variables
return boost::make_shared<JacobianFactor>(Aterms, b);
} else {
return boost::make_shared<JacobianFactor>();
}
}
//******************************************************************************
QPState QPSolver::iterate(const QPState& state) const {
// Algorithm 16.3 from Nocedal06book.
// Solve with the current working set eqn 16.39, but instead of solving for p
// solve for x
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
// If we CAN'T move further
// if p_k = 0 is the original condition, modified by Duy to say that the state
// update is zero.
if (newValues.equals(state.values, 1e-7)) {
// Compute lambda from the dual graph
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
newValues);
VectorValues duals = dualGraph->optimize();
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
return QPState(newValues, duals, state.workingSet, true,
state.iterations + 1);
} else {
// Inactivate the leaving constraint
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return QPState(newValues, duals, newWorkingSet, false,
state.iterations + 1);
}
} else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
double alpha;
int factorIx;
VectorValues p = newValues - state.values;
boost::tie(alpha, factorIx) = // using 16.41
computeStepSize(state.workingSet, state.values, p);
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return QPState(newValues, state.duals, newWorkingSet, false,
state.iterations + 1);
}
}
//******************************************************************************
pair<VectorValues, VectorValues> QPSolver::optimize(
const VectorValues& initialValues, const VectorValues& duals,
bool useWarmStart) const {
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities,
initialValues, duals, useWarmStart);
QPState state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged)
state = iterate(state);
return make_pair(state.values, state.duals);
}
//******************************************************************************
pair<VectorValues, VectorValues> QPSolver::optimize() const {
//Make an LP with any linear cost function. It doesn't matter for initialization.
LP initProblem;
// make an unrelated key for a random variable cost
Key newKey = maxKey(qp_) + 1;
initProblem.cost = LinearCost(newKey, Vector::Ones(1));
initProblem.equalities = qp_.equalities;
initProblem.inequalities = qp_.inequalities;
LPInitSolver initSolver(initProblem);
VectorValues initValues = initSolver.solve();
return optimize(initValues);
}
} /* namespace gtsam */