/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file QPSolver.cpp * @brief * @date Apr 15, 2014 * @author Duy-Nguyen Ta */ #include #include #include #include #include #include #include using namespace std; namespace gtsam { //****************************************************************************** QPSolver::QPSolver(const QP& qp) : ActiveSetSolver(1.0), qp_(qp) { equalityVariableIndex_ = VariableIndex(qp_.equalities); inequalityVariableIndex_ = VariableIndex(qp_.inequalities); constrainedKeys_ = qp_.equalities.keys(); constrainedKeys_.merge(qp_.inequalities.keys()); } //***************************************************cc*************************** VectorValues QPSolver::solveWithCurrentWorkingSet( const InequalityFactorGraph& workingSet) const { GaussianFactorGraph workingGraph = qp_.cost; workingGraph.push_back(qp_.equalities); for (const LinearInequality::shared_ptr& factor : workingSet) { if (factor->active()) workingGraph.push_back(factor); } return workingGraph.optimize(); } //****************************************************************************** JacobianFactor::shared_ptr QPSolver::createDualFactor( Key key, const InequalityFactorGraph& workingSet, const VectorValues& delta) const { // Transpose the A matrix of constrained factors to have the jacobian of the // dual key TermsContainer Aterms = collectDualJacobians( key, qp_.equalities, equalityVariableIndex_); TermsContainer AtermsInequalities = collectDualJacobians( key, workingSet, inequalityVariableIndex_); Aterms.insert(Aterms.end(), AtermsInequalities.begin(), AtermsInequalities.end()); // Collect the gradients of unconstrained cost factors to the b vector if (Aterms.size() > 0) { Vector b = qp_.costGradient(key, delta); // to compute the least-square approximation of dual variables return boost::make_shared(Aterms, b); } else { return boost::make_shared(); } } //****************************************************************************** QPState QPSolver::iterate(const QPState& state) const { // Algorithm 16.3 from Nocedal06book. // Solve with the current working set eqn 16.39, but instead of solving for p // solve for x VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet); // If we CAN'T move further // if p_k = 0 is the original condition, modified by Duy to say that the state // update is zero. if (newValues.equals(state.values, 1e-7)) { // Compute lambda from the dual graph GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues); VectorValues duals = dualGraph->optimize(); int leavingFactor = identifyLeavingConstraint(state.workingSet, duals); // If all inequality constraints are satisfied: We have the solution!! if (leavingFactor < 0) { return QPState(newValues, duals, state.workingSet, true, state.iterations + 1); } else { // Inactivate the leaving constraint InequalityFactorGraph newWorkingSet = state.workingSet; newWorkingSet.at(leavingFactor)->inactivate(); return QPState(newValues, duals, newWorkingSet, false, state.iterations + 1); } } else { // If we CAN make some progress, i.e. p_k != 0 // Adapt stepsize if some inactive constraints complain about this move double alpha; int factorIx; VectorValues p = newValues - state.values; boost::tie(alpha, factorIx) = // using 16.41 computeStepSize(state.workingSet, state.values, p); // also add to the working set the one that complains the most InequalityFactorGraph newWorkingSet = state.workingSet; if (factorIx >= 0) newWorkingSet.at(factorIx)->activate(); // step! newValues = state.values + alpha * p; return QPState(newValues, state.duals, newWorkingSet, false, state.iterations + 1); } } //****************************************************************************** pair QPSolver::optimize( const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const { // Initialize workingSet from the feasible initialValues InequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities, initialValues, duals, useWarmStart); QPState state(initialValues, duals, workingSet, false, 0); /// main loop of the solver while (!state.converged) state = iterate(state); return make_pair(state.values, state.duals); } //****************************************************************************** pair QPSolver::optimize() const { //Make an LP with any linear cost function. It doesn't matter for initialization. LP initProblem; // make an unrelated key for a random variable cost Key newKey = maxKey(qp_) + 1; initProblem.cost = LinearCost(newKey, Vector::Ones(1)); initProblem.equalities = qp_.equalities; initProblem.inequalities = qp_.inequalities; LPInitSolver initSolver(initProblem); VectorValues initValues = initSolver.solve(); return optimize(initValues); } } /* namespace gtsam */