gtsam/python/gtsam/tests/test_Sim2.py

195 lines
6.8 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Sim3 unit tests.
Author: John Lambert
"""
# pylint: disable=no-name-in-module
import unittest
import numpy as np
from gtsam import Pose2, Pose2Pairs, Rot2, Similarity2
from gtsam.utils.test_case import GtsamTestCase
class TestSim2(GtsamTestCase):
"""Test selected Sim2 methods."""
def test_align_poses_along_straight_line(self) -> None:
"""Test Align Pose2Pairs method.
Scenario:
3 object poses
same scale (no gauge ambiguity)
world frame has poses rotated about 180 degrees.
world and egovehicle frame translated by 15 meters w.r.t. each other
"""
R180 = Rot2.fromDegrees(180)
# Create source poses (three objects o1, o2, o3 living in the egovehicle "e" frame)
# Suppose they are 3d cuboids detected by an onboard sensor in the egovehicle frame
eTo0 = Pose2(Rot2(), np.array([5, 0]))
eTo1 = Pose2(Rot2(), np.array([10, 0]))
eTo2 = Pose2(Rot2(), np.array([15, 0]))
eToi_list = [eTo0, eTo1, eTo2]
# Create destination poses
# (same three objects, but instead living in the world "w" frame)
wTo0 = Pose2(R180, np.array([-10, 0]))
wTo1 = Pose2(R180, np.array([-5, 0]))
wTo2 = Pose2(R180, np.array([0, 0]))
wToi_list = [wTo0, wTo1, wTo2]
we_pairs = Pose2Pairs(list(zip(wToi_list, eToi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
wSe = Similarity2.Align(we_pairs)
for wToi, eToi in zip(wToi_list, eToi_list):
self.gtsamAssertEquals(wToi, wSe.transformFrom(eToi))
def test_align_poses_along_straight_line_gauge(self):
"""Test if Align Pose3Pairs method can account for gauge ambiguity.
Scenario:
3 object poses
with gauge ambiguity (2x scale)
world frame has poses rotated by 90 degrees.
world and egovehicle frame translated by 11 meters w.r.t. each other
"""
R90 = Rot2.fromDegrees(90)
# Create source poses (three objects o1, o2, o3 living in the egovehicle "e" frame)
# Suppose they are 3d cuboids detected by an onboard sensor in the egovehicle frame
eTo0 = Pose2(Rot2(), np.array([1, 0]))
eTo1 = Pose2(Rot2(), np.array([2, 0]))
eTo2 = Pose2(Rot2(), np.array([4, 0]))
eToi_list = [eTo0, eTo1, eTo2]
# Create destination poses
# (same three objects, but instead living in the world/city "w" frame)
wTo0 = Pose2(R90, np.array([0, 12]))
wTo1 = Pose2(R90, np.array([0, 14]))
wTo2 = Pose2(R90, np.array([0, 18]))
wToi_list = [wTo0, wTo1, wTo2]
we_pairs = Pose2Pairs(list(zip(wToi_list, eToi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
wSe = Similarity2.Align(we_pairs)
for wToi, eToi in zip(wToi_list, eToi_list):
self.gtsamAssertEquals(wToi, wSe.transformFrom(eToi))
def test_align_poses_scaled_squares(self):
"""Test if Align Pose2Pairs method can account for gauge ambiguity.
Make sure a big and small square can be aligned.
The u's represent a big square (10x10), and v's represents a small square (4x4).
Scenario:
4 object poses
with gauge ambiguity (2.5x scale)
"""
# 0, 90, 180, and 270 degrees yaw
R0 = Rot2.fromDegrees(0)
R90 = Rot2.fromDegrees(90)
R180 = Rot2.fromDegrees(180)
R270 = Rot2.fromDegrees(270)
aTi0 = Pose2(R0, np.array([2, 3]))
aTi1 = Pose2(R90, np.array([12, 3]))
aTi2 = Pose2(R180, np.array([12, 13]))
aTi3 = Pose2(R270, np.array([2, 13]))
aTi_list = [aTi0, aTi1, aTi2, aTi3]
bTi0 = Pose2(R0, np.array([4, 3]))
bTi1 = Pose2(R90, np.array([8, 3]))
bTi2 = Pose2(R180, np.array([8, 7]))
bTi3 = Pose2(R270, np.array([4, 7]))
bTi_list = [bTi0, bTi1, bTi2, bTi3]
ab_pairs = Pose2Pairs(list(zip(aTi_list, bTi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
aSb = Similarity2.Align(ab_pairs)
for aTi, bTi in zip(aTi_list, bTi_list):
self.gtsamAssertEquals(aTi, aSb.transformFrom(bTi))
def test_constructor(self) -> None:
"""Sim(2) to perform p_b = bSa * p_a"""
bRa = Rot2()
bta = np.array([1, 2])
bsa = 3.0
bSa = Similarity2(R=bRa, t=bta, s=bsa)
self.assertIsInstance(bSa, Similarity2)
np.testing.assert_allclose(bSa.rotation().matrix(), bRa.matrix())
np.testing.assert_allclose(bSa.translation(), bta)
np.testing.assert_allclose(bSa.scale(), bsa)
def test_is_eq(self) -> None:
"""Ensure object equality works properly (are equal)."""
bSa = Similarity2(R=Rot2(), t=np.array([1, 2]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([1.0, 2.0]), s=3)
self.gtsamAssertEquals(bSa, bSa_)
def test_not_eq_translation(self) -> None:
"""Ensure object equality works properly (not equal translation)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([1.0, 2.0]), s=3)
self.assertNotEqual(bSa, bSa_)
def test_not_eq_rotation(self) -> None:
"""Ensure object equality works properly (not equal rotation)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2.fromDegrees(180), t=np.array([2.0, 1.0]), s=3)
self.assertNotEqual(bSa, bSa_)
def test_not_eq_scale(self) -> None:
"""Ensure object equality works properly (not equal scale)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([2.0, 1.0]), s=1.0)
self.assertNotEqual(bSa, bSa_)
def test_rotation(self) -> None:
"""Ensure rotation component is returned properly."""
R = Rot2.fromDegrees(90)
t = np.array([1, 2])
bSa = Similarity2(R=R, t=t, s=3.0)
# evaluates to [[0, -1], [1, 0]]
expected_R = Rot2.fromDegrees(90)
np.testing.assert_allclose(expected_R.matrix(), bSa.rotation().matrix())
def test_translation(self) -> None:
"""Ensure translation component is returned properly."""
R = Rot2.fromDegrees(90)
t = np.array([1, 2])
bSa = Similarity2(R=R, t=t, s=3.0)
expected_t = np.array([1, 2])
np.testing.assert_allclose(expected_t, bSa.translation())
def test_scale(self) -> None:
"""Ensure the scale factor is returned properly."""
bRa = Rot2()
bta = np.array([1, 2])
bsa = 3.0
bSa = Similarity2(R=bRa, t=bta, s=bsa)
self.assertEqual(bSa.scale(), 3.0)
if __name__ == "__main__":
unittest.main()