294 lines
9.9 KiB
C++
294 lines
9.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* testTriangulation.cpp
|
|
*
|
|
* Created on: July 30th, 2013
|
|
* Author: cbeall3
|
|
*/
|
|
|
|
#include <gtsam_unstable/geometry/triangulation.h>
|
|
#include <gtsam/geometry/Cal3Bundler.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/assign.hpp>
|
|
#include <boost/assign/std/vector.hpp>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost::assign;
|
|
|
|
// Some common constants
|
|
|
|
static const boost::shared_ptr<Cal3_S2> sharedCal = //
|
|
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
|
|
|
|
// Looking along X-axis, 1 meter above ground plane (x-y)
|
|
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
|
|
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
|
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
|
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
|
|
|
|
// landmark ~5 meters infront of camera
|
|
static const Point3 landmark(5, 0.5, 1.2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 z1 = camera1.project(landmark);
|
|
Point2 z2 = camera2.project(landmark);
|
|
|
|
//******************************************************************************
|
|
TEST( triangulation, twoPoses) {
|
|
|
|
vector<Pose3> poses;
|
|
vector<Point2> measurements;
|
|
|
|
poses += pose1, pose2;
|
|
measurements += z1, z2;
|
|
|
|
bool optimize = true;
|
|
double rank_tol = 1e-9;
|
|
|
|
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
|
sharedCal, measurements, rank_tol, optimize);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
|
|
|
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
|
measurements.at(0) += Point2(0.1, 0.5);
|
|
measurements.at(1) += Point2(-0.2, 0.3);
|
|
|
|
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
|
sharedCal, measurements, rank_tol, optimize);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
|
}
|
|
|
|
//******************************************************************************
|
|
|
|
TEST( triangulation, twoPosesBundler) {
|
|
|
|
boost::shared_ptr<Cal3Bundler> bundlerCal = //
|
|
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
|
|
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
|
|
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 z1 = camera1.project(landmark);
|
|
Point2 z2 = camera2.project(landmark);
|
|
|
|
vector<Pose3> poses;
|
|
vector<Point2> measurements;
|
|
|
|
poses += pose1, pose2;
|
|
measurements += z1, z2;
|
|
|
|
bool optimize = true;
|
|
double rank_tol = 1e-9;
|
|
|
|
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
|
bundlerCal, measurements, rank_tol, optimize);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
|
|
|
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
|
measurements.at(0) += Point2(0.1, 0.5);
|
|
measurements.at(1) += Point2(-0.2, 0.3);
|
|
|
|
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
|
bundlerCal, measurements, rank_tol, optimize);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST( triangulation, fourPoses) {
|
|
vector<Pose3> poses;
|
|
vector<Point2> measurements;
|
|
|
|
poses += pose1, pose2;
|
|
measurements += z1, z2;
|
|
|
|
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
|
sharedCal, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
|
|
|
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
|
measurements.at(0) += Point2(0.1, 0.5);
|
|
measurements.at(1) += Point2(-0.2, 0.3);
|
|
|
|
boost::optional<Point3> triangulated_landmark_noise = //
|
|
triangulatePoint3(poses, sharedCal, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
|
|
|
// 3. Add a slightly rotated third camera above, again with measurement noise
|
|
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
|
SimpleCamera camera3(pose3, *sharedCal);
|
|
Point2 z3 = camera3.project(landmark);
|
|
|
|
poses += pose3;
|
|
measurements += z3 + Point2(0.1, -0.1);
|
|
|
|
boost::optional<Point3> triangulated_3cameras = //
|
|
triangulatePoint3(poses, sharedCal, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
|
|
|
// Again with nonlinear optimization
|
|
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
|
|
sharedCal, measurements, 1e-9, true);
|
|
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
|
|
|
// 4. Test failure: Add a 4th camera facing the wrong way
|
|
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
SimpleCamera camera4(pose4, *sharedCal);
|
|
|
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
|
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
|
|
|
poses += pose4;
|
|
measurements += Point2(400, 400);
|
|
|
|
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
|
TriangulationCheiralityException);
|
|
#endif
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST( triangulation, fourPoses_distinct_Ks) {
|
|
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
SimpleCamera camera1(pose1, K1);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
|
SimpleCamera camera2(pose2, K2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 z1 = camera1.project(landmark);
|
|
Point2 z2 = camera2.project(landmark);
|
|
|
|
vector<SimpleCamera> cameras;
|
|
vector<Point2> measurements;
|
|
|
|
cameras += camera1, camera2;
|
|
measurements += z1, z2;
|
|
|
|
boost::optional<Point3> triangulated_landmark = //
|
|
triangulatePoint3(cameras, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
|
|
|
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
|
measurements.at(0) += Point2(0.1, 0.5);
|
|
measurements.at(1) += Point2(-0.2, 0.3);
|
|
|
|
boost::optional<Point3> triangulated_landmark_noise = //
|
|
triangulatePoint3(cameras, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
|
|
|
// 3. Add a slightly rotated third camera above, again with measurement noise
|
|
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
|
Cal3_S2 K3(700, 500, 0, 640, 480);
|
|
SimpleCamera camera3(pose3, K3);
|
|
Point2 z3 = camera3.project(landmark);
|
|
|
|
cameras += camera3;
|
|
measurements += z3 + Point2(0.1, -0.1);
|
|
|
|
boost::optional<Point3> triangulated_3cameras = //
|
|
triangulatePoint3(cameras, measurements);
|
|
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
|
|
|
// Again with nonlinear optimization
|
|
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
|
|
measurements, 1e-9, true);
|
|
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
|
|
|
// 4. Test failure: Add a 4th camera facing the wrong way
|
|
Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
|
Cal3_S2 K4(700, 500, 0, 640, 480);
|
|
SimpleCamera camera4(pose4, K4);
|
|
|
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
|
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
|
|
|
cameras += camera4;
|
|
measurements += Point2(400, 400);
|
|
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
|
|
TriangulationCheiralityException);
|
|
#endif
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST( triangulation, twoIdenticalPoses) {
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
SimpleCamera camera1(pose1, *sharedCal);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 z1 = camera1.project(landmark);
|
|
|
|
vector<Pose3> poses;
|
|
vector<Point2> measurements;
|
|
|
|
poses += pose1, pose1;
|
|
measurements += z1, z1;
|
|
|
|
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
|
TriangulationUnderconstrainedException);
|
|
}
|
|
|
|
//******************************************************************************
|
|
/*
|
|
TEST( triangulation, onePose) {
|
|
// we expect this test to fail with a TriangulationUnderconstrainedException
|
|
// because there's only one camera observation
|
|
|
|
Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
|
|
|
|
vector<Pose3> poses;
|
|
vector<Point2> measurements;
|
|
|
|
poses += Pose3();
|
|
measurements += Point2();
|
|
|
|
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
|
|
TriangulationUnderconstrainedException);
|
|
}
|
|
*/
|
|
|
|
//******************************************************************************
|
|
TEST( triangulation, TriangulationFactor ) {
|
|
// Create the factor with a measurement that is 3 pixels off in x
|
|
Key pointKey(1);
|
|
SharedNoiseModel model;
|
|
typedef TriangulationFactor<> Factor;
|
|
Factor factor(camera1, z1, model, pointKey, sharedCal);
|
|
|
|
// Use the factor to calculate the Jacobians
|
|
Matrix HActual;
|
|
factor.evaluateError(landmark, HActual);
|
|
|
|
// Matrix expectedH1 = numericalDerivative11<Pose3>(
|
|
// boost::bind(&EssentialMatrixConstraint::evaluateError, &factor, _1, pose2,
|
|
// boost::none, boost::none), pose1);
|
|
// The expected Jacobian
|
|
Matrix HExpected = numericalDerivative11<Point3>(
|
|
boost::bind(&Factor::evaluateError, &factor, _1, boost::none), landmark);
|
|
|
|
// Verify the Jacobians are correct
|
|
CHECK(assert_equal(HExpected, HActual, 1e-3));
|
|
}
|
|
|
|
//******************************************************************************
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
//******************************************************************************
|