gtsam/gtsam/geometry/triangulation.cpp

198 lines
6.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file triangulation.h
* @brief Functions for triangulation
* @date July 31, 2013
* @author Chris Beall
* @author Akshay Krishnan
*/
#include <gtsam/geometry/triangulation.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
namespace gtsam {
Vector4 triangulateHomogeneousDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
projection_matrices,
const Point2Vector& measurements, double rank_tol) {
// number of cameras
size_t m = projection_matrices.size();
// Allocate DLT matrix
Matrix A = Matrix::Zero(m * 2, 4);
for (size_t i = 0; i < m; i++) {
size_t row = i * 2;
const Matrix34& projection = projection_matrices.at(i);
const Point2& p = measurements.at(i);
// build system of equations
// [A_1; A_2; A_3] x = [b_1; b_2; b_3]
// [b_3 * A_1 - b_1 * A_3] x = 0
// [b_3 * A_2 - b_2 * A_3] x = 0
// A' x = 0
// A' 2x4 = [b_3 * A_1 - b_1 * A_3; b_3 * A_2 - b_2 * A_3]
A.row(row) = p.x() * projection.row(2) - projection.row(0);
A.row(row + 1) = p.y() * projection.row(2) - projection.row(1);
}
const auto [rank, error, v] = DLT(A, rank_tol);
if (rank < 3) throw(TriangulationUnderconstrainedException());
return v;
}
Vector4 triangulateHomogeneousDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
projection_matrices,
const std::vector<Unit3>& measurements, double rank_tol) {
// number of cameras
size_t m = projection_matrices.size();
// Allocate DLT matrix
Matrix A = Matrix::Zero(m * 2, 4);
for (size_t i = 0; i < m; i++) {
size_t row = i * 2;
const Matrix34& projection = projection_matrices.at(i);
const Point3& p =
measurements.at(i)
.point3(); // to get access to x,y,z of the bearing vector
// build system of equations
A.row(row) = p.x() * projection.row(2) - p.z() * projection.row(0);
A.row(row + 1) = p.y() * projection.row(2) - p.z() * projection.row(1);
}
const auto [rank, error, v] = DLT(A, rank_tol);
if (rank < 3) throw(TriangulationUnderconstrainedException());
return v;
}
Point3 triangulateLOST(const std::vector<Pose3>& poses,
const Point3Vector& calibratedMeasurements,
const SharedIsotropic& measurementNoise,
double rank_tol) {
size_t m = calibratedMeasurements.size();
assert(m == poses.size());
// Construct the system matrices.
Matrix A = Matrix::Zero(m * 2, 3);
Matrix b = Matrix::Zero(m * 2, 1);
for (size_t i = 0; i < m; i++) {
const Pose3& wTi = poses[i];
// TODO(akshay-krishnan): are there better ways to select j?
int j = (i + 1) % m;
const Pose3& wTj = poses[j];
Point3 d_ij = wTj.translation() - wTi.translation();
Point3 wZi = wTi.rotation().rotate(calibratedMeasurements[i]);
Point3 wZj = wTj.rotation().rotate(calibratedMeasurements[j]);
double num_i = wZi.cross(wZj).norm();
double den_i = d_ij.cross(wZj).norm();
// Handle q_i = 0 (or NaN), which arises if the measurement vectors, wZi and
// wZj, coincide (or the baseline vector coincides with the jth measurement
// vector).
if (num_i == 0 || den_i == 0) {
bool success = false;
for (size_t k = 2; k < m; k++) {
j = (i + k) % m;
const Pose3& wTj = poses[j];
d_ij = wTj.translation() - wTi.translation();
wZj = wTj.rotation().rotate(calibratedMeasurements[j]);
num_i = wZi.cross(wZj).norm();
den_i = d_ij.cross(wZj).norm();
if (num_i > 0 && den_i > 0) {
success = true;
break;
}
}
if (!success) throw(TriangulationUnderconstrainedException());
}
// Note: Setting q_i = 1.0 gives same results as DLT.
const double q_i = num_i / (measurementNoise->sigma() * den_i);
const Matrix23 coefficientMat =
q_i * skewSymmetric(calibratedMeasurements[i]).topLeftCorner(2, 3) *
wTi.rotation().matrix().transpose();
A.block<2, 3>(2 * i, 0) << coefficientMat;
b.block<2, 1>(2 * i, 0) << coefficientMat * wTi.translation();
}
Eigen::ColPivHouseholderQR<Matrix> A_Qr = A.colPivHouseholderQr();
A_Qr.setThreshold(rank_tol);
if (A_Qr.rank() < 3) throw(TriangulationUnderconstrainedException());
return A_Qr.solve(b);
}
Point3 triangulateDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
projection_matrices,
const Point2Vector& measurements, double rank_tol) {
Vector4 v =
triangulateHomogeneousDLT(projection_matrices, measurements, rank_tol);
// Create 3D point from homogeneous coordinates
return Point3(v.head<3>() / v[3]);
}
Point3 triangulateDLT(
const std::vector<Matrix34, Eigen::aligned_allocator<Matrix34>>&
projection_matrices,
const std::vector<Unit3>& measurements, double rank_tol) {
// contrary to previous triangulateDLT, this is now taking Unit3 inputs
Vector4 v =
triangulateHomogeneousDLT(projection_matrices, measurements, rank_tol);
// Create 3D point from homogeneous coordinates
return Point3(v.head<3>() / v[3]);
}
/**
* Optimize for triangulation
* @param graph nonlinear factors for projection
* @param values initial values
* @param landmarkKey to refer to landmark
* @return refined Point3
*/
Point3 optimize(const NonlinearFactorGraph& graph, const Values& values,
Key landmarkKey) {
// Maybe we should consider Gauss-Newton?
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
params.lambdaInitial = 1;
params.lambdaFactor = 10;
params.maxIterations = 100;
params.absoluteErrorTol = 1.0;
params.verbosityLM = LevenbergMarquardtParams::SILENT;
params.verbosity = NonlinearOptimizerParams::SILENT;
params.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_CHOLESKY;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
Values result = optimizer.optimize();
return result.at<Point3>(landmarkKey);
}
} // namespace gtsam