gtsam/gtsam/nonlinear/NonlinearConjugateGradientO...

186 lines
6.4 KiB
C++

/**
* @file GradientDescentOptimizer.cpp
* @brief
* @author Yong-Dian Jian
* @date Jun 11, 2012
*/
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/nonlinear/NonlinearOptimizer.h>
#include <boost/tuple/tuple.hpp>
namespace gtsam {
/** An implementation of the nonlinear cg method using the template below */
class GTSAM_EXPORT NonlinearConjugateGradientState : public NonlinearOptimizerState {
public:
typedef NonlinearOptimizerState Base;
NonlinearConjugateGradientState(const NonlinearFactorGraph& graph, const Values& values)
: Base(graph, values) {}
};
class GTSAM_EXPORT NonlinearConjugateGradientOptimizer : public NonlinearOptimizer {
/* a class for the nonlinearConjugateGradient template */
class System {
public:
typedef Values State;
typedef VectorValues Gradient;
typedef NonlinearOptimizerParams Parameters;
protected:
const NonlinearFactorGraph &graph_;
public:
System(const NonlinearFactorGraph &graph): graph_(graph) {}
double error(const State &state) const ;
Gradient gradient(const State &state) const ;
State advance(const State &current, const double alpha, const Gradient &g) const ;
};
public:
typedef NonlinearOptimizer Base;
typedef NonlinearConjugateGradientState States;
typedef NonlinearOptimizerParams Parameters;
typedef boost::shared_ptr<NonlinearConjugateGradientOptimizer> shared_ptr;
protected:
States state_;
Parameters params_;
public:
NonlinearConjugateGradientOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
const Parameters& params = Parameters())
: Base(graph), state_(graph, initialValues), params_(params) {}
virtual ~NonlinearConjugateGradientOptimizer() {}
virtual void iterate();
virtual const Values& optimize ();
virtual const NonlinearOptimizerState& _state() const { return state_; }
virtual const NonlinearOptimizerParams& _params() const { return params_; }
};
/** Implement the golden-section line search algorithm */
template <class S, class V, class W>
double lineSearch(const S &system, const V currentValues, const W &gradient) {
/* normalize it such that it becomes a unit vector */
const double g = gradient.norm();
// perform the golden section search algorithm to decide the the optimal step size
// detail refer to http://en.wikipedia.org/wiki/Golden_section_search
const double phi = 0.5*(1.0+std::sqrt(5.0)), resphi = 2.0 - phi, tau = 1e-5;
double minStep = -1.0/g, maxStep = 0,
newStep = minStep + (maxStep-minStep) / (phi+1.0) ;
V newValues = system.advance(currentValues, newStep, gradient);
double newError = system.error(newValues);
while (true) {
const bool flag = (maxStep - newStep > newStep - minStep) ? true : false ;
const double testStep = flag ?
newStep + resphi * (maxStep - newStep) : newStep - resphi * (newStep - minStep);
if ( (maxStep- minStep) < tau * (std::fabs(testStep) + std::fabs(newStep)) ) {
return 0.5*(minStep+maxStep);
}
const V testValues = system.advance(currentValues, testStep, gradient);
const double testError = system.error(testValues);
// update the working range
if ( testError >= newError ) {
if ( flag ) maxStep = testStep;
else minStep = testStep;
}
else {
if ( flag ) {
minStep = newStep;
newStep = testStep;
newError = testError;
}
else {
maxStep = newStep;
newStep = testStep;
newError = testError;
}
}
}
return 0.0;
}
/**
* Implement the nonlinear conjugate gradient method using the Polak-Ribieve formula suggested in
* http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method.
*
* The S (system) class requires three member functions: error(state), gradient(state) and
* advance(state, step-size, direction). The V class denotes the state or the solution.
*
* The last parameter is a switch between gradient-descent and conjugate gradient
*/
template <class S, class V>
boost::tuple<V, int> nonlinearConjugateGradient(const S &system, const V &initial, const NonlinearOptimizerParams &params, const bool singleIteration, const bool gradientDescent = false) {
// GTSAM_CONCEPT_MANIFOLD_TYPE(V);
int iteration = 0;
// check if we're already close enough
double currentError = system.error(initial);
if(currentError <= params.errorTol) {
if (params.verbosity >= NonlinearOptimizerParams::ERROR){
std::cout << "Exiting, as error = " << currentError << " < " << params.errorTol << std::endl;
}
return boost::tie(initial, iteration);
}
V currentValues = initial;
typename S::Gradient currentGradient = system.gradient(currentValues), prevGradient,
direction = currentGradient;
/* do one step of gradient descent */
V prevValues = currentValues; double prevError = currentError;
double alpha = lineSearch(system, currentValues, direction);
currentValues = system.advance(prevValues, alpha, direction);
currentError = system.error(currentValues);
// Maybe show output
if (params.verbosity >= NonlinearOptimizerParams::ERROR) std::cout << "Initial error: " << currentError << std::endl;
// Iterative loop
do {
if ( gradientDescent == true) {
direction = system.gradient(currentValues);
}
else {
prevGradient = currentGradient;
currentGradient = system.gradient(currentValues);
const double beta = std::max(0.0, currentGradient.dot(currentGradient-prevGradient)/currentGradient.dot(currentGradient));
direction = currentGradient + (beta*direction);
}
alpha = lineSearch(system, currentValues, direction);
prevValues = currentValues; prevError = currentError;
currentValues = system.advance(prevValues, alpha, direction);
currentError = system.error(currentValues);
// Maybe show output
if(params.verbosity >= NonlinearOptimizerParams::ERROR) std::cout << "currentError: " << currentError << std::endl;
} while( ++iteration < params.maxIterations &&
!singleIteration &&
!checkConvergence(params.relativeErrorTol, params.absoluteErrorTol, params.errorTol, prevError, currentError, params.verbosity));
// Printing if verbose
if (params.verbosity >= NonlinearOptimizerParams::ERROR && iteration >= params.maxIterations)
std::cout << "nonlinearConjugateGradient: Terminating because reached maximum iterations" << std::endl;
return boost::tie(currentValues, iteration);
}
}