gtsam/gtsam_unstable/dynamics/PoseRTV.cpp

323 lines
11 KiB
C++

/**
* @file PoseRTV.cpp
* @author Alex Cunningham
*/
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Vector.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam_unstable/dynamics/PoseRTV.h>
namespace gtsam {
using namespace std;
static const Vector g = delta(3, 2, 9.81);
/* ************************************************************************* */
double bound(double a, double min, double max) {
if (a < min) return min;
else if (a > max) return max;
else return a;
}
/* ************************************************************************* */
PoseRTV::PoseRTV(double roll, double pitch, double yaw, double x, double y, double z,
double vx, double vy, double vz)
: Rt_(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z)), v_(vx, vy, vz) {}
/* ************************************************************************* */
PoseRTV::PoseRTV(const Vector& rtv)
: Rt_(Rot3::RzRyRx(rtv.head(3)), Point3(rtv.segment(3, 3))), v_(rtv.tail(3))
{
}
/* ************************************************************************* */
Vector PoseRTV::vector() const {
Vector rtv(9);
rtv.head(3) = Rt_.rotation().xyz();
rtv.segment(3,3) = Rt_.translation().vector();
rtv.tail(3) = v_.vector();
return rtv;
}
/* ************************************************************************* */
bool PoseRTV::equals(const PoseRTV& other, double tol) const {
return Rt_.equals(other.Rt_, tol) && v_.equals(other.v_, tol);
}
/* ************************************************************************* */
void PoseRTV::print(const string& s) const {
cout << s << ":" << endl;
gtsam::print((Vector)R().xyz(), " R:rpy");
t().print(" T");
v_.print(" V");
}
/* ************************************************************************* */
PoseRTV PoseRTV::Expmap(const Vector9& v, ChartJacobian H) {
if (H) CONCEPT_NOT_IMPLEMENTED;
Pose3 newPose = Pose3::Expmap(v.head<6>());
Velocity3 newVel = Velocity3(v.tail<3>());
return PoseRTV(newPose, newVel);
}
/* ************************************************************************* */
Vector9 PoseRTV::Logmap(const PoseRTV& p, ChartJacobian H) {
if (H) CONCEPT_NOT_IMPLEMENTED;
Vector6 Lx = Pose3::Logmap(p.Rt_);
Vector3 Lv = p.v_.vector();
return (Vector9() << Lx, Lv).finished();
}
/* ************************************************************************* */
PoseRTV PoseRTV::retract(const Vector& v,
ChartJacobian Horigin,
ChartJacobian Hv) const {
if (Horigin || Hv) CONCEPT_NOT_IMPLEMENTED;
assert(v.size() == 9);
// First order approximation
Pose3 newPose = Rt_.retract(sub(v, 0, 6));
Velocity3 newVel = v_ + Rt_.rotation() * Point3(sub(v, 6, 9));
return PoseRTV(newPose, newVel);
}
/* ************************************************************************* */
Vector PoseRTV::localCoordinates(const PoseRTV& p1,
ChartJacobian Horigin,
ChartJacobian Hp) const {
if (Horigin || Hp) CONCEPT_NOT_IMPLEMENTED;
const Pose3& x0 = pose(), &x1 = p1.pose();
// First order approximation
Vector6 poseLogmap = x0.localCoordinates(x1);
Vector3 lv = rotation().unrotate(p1.velocity() - v_).vector();
return (Vector(9) << poseLogmap, lv).finished();
}
/* ************************************************************************* */
PoseRTV inverse_(const PoseRTV& p) { return p.inverse(); }
PoseRTV PoseRTV::inverse(ChartJacobian H1) const {
if (H1) *H1 = numericalDerivative11<PoseRTV,PoseRTV>(inverse_, *this, 1e-5);
return PoseRTV(Rt_.inverse(), - v_);
}
/* ************************************************************************* */
PoseRTV compose_(const PoseRTV& p1, const PoseRTV& p2) { return p1.compose(p2); }
PoseRTV PoseRTV::compose(const PoseRTV& p, ChartJacobian H1,
ChartJacobian H2) const {
if (H1) *H1 = numericalDerivative21(compose_, *this, p, 1e-5);
if (H2) *H2 = numericalDerivative22(compose_, *this, p, 1e-5);
return PoseRTV(Rt_.compose(p.Rt_), v_+p.v_);
}
/* ************************************************************************* */
PoseRTV between_(const PoseRTV& p1, const PoseRTV& p2) { return p1.between(p2); }
PoseRTV PoseRTV::between(const PoseRTV& p,
ChartJacobian H1,
ChartJacobian H2) const {
if (H1) *H1 = numericalDerivative21(between_, *this, p, 1e-5);
if (H2) *H2 = numericalDerivative22(between_, *this, p, 1e-5);
return inverse().compose(p);
}
/* ************************************************************************* */
PoseRTV PoseRTV::planarDynamics(double vel_rate, double heading_rate,
double max_accel, double dt) const {
// split out initial state
const Rot3& r1 = R();
const Velocity3& v1 = v();
// Update vehicle heading
Rot3 r2 = r1.retract((Vector(3) << 0.0, 0.0, heading_rate * dt).finished());
const double yaw2 = r2.ypr()(0);
// Update vehicle position
const double mag_v1 = v1.norm();
// FIXME: this doesn't account for direction in velocity bounds
double dv = bound(vel_rate - mag_v1, - (max_accel * dt), max_accel * dt);
double mag_v2 = mag_v1 + dv;
Velocity3 v2 = mag_v2 * Velocity3(cos(yaw2), sin(yaw2), 0.0);
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(r2, t2, v2);
}
/* ************************************************************************* */
PoseRTV PoseRTV::flyingDynamics(
double pitch_rate, double heading_rate, double lift_control, double dt) const {
// split out initial state
const Rot3& r1 = R();
const Velocity3& v1 = v();
// Update vehicle heading (and normalise yaw)
Vector rot_rates = (Vector(3) << 0.0, pitch_rate, heading_rate).finished();
Rot3 r2 = r1.retract(rot_rates*dt);
// Work out dynamics on platform
const double thrust = 50.0;
const double lift = 50.0;
const double drag = 0.1;
double yaw2 = r2.yaw();
double pitch2 = r2.pitch();
double forward_accel = -thrust * sin(pitch2); // r2, pitch (in global frame?) controls forward force
double loss_lift = lift*fabs(sin(pitch2));
Rot3 yaw_correction_bn = Rot3::yaw(yaw2);
Point3 forward(forward_accel, 0.0, 0.0);
Vector Acc_n =
yaw_correction_bn.rotate(forward).vector() // applies locally forward force in the global frame
- drag * (Vector(3) << v1.x(), v1.y(), 0.0).finished() // drag term dependent on v1
+ delta(3, 2, loss_lift - lift_control); // falling due to lift lost from pitch
// Update Vehicle Position and Velocity
Velocity3 v2 = v1 + Velocity3(Acc_n * dt);
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(r2, t2, v2);
}
/* ************************************************************************* */
PoseRTV PoseRTV::generalDynamics(
const Vector& accel, const Vector& gyro, double dt) const {
// Integrate Attitude Equations
Rot3 r2 = rotation().retract(gyro * dt);
// Integrate Velocity Equations
Velocity3 v2 = v_ + (Velocity3(dt * (r2.matrix() * accel + g)));
// Integrate Position Equations
Point3 t2 = translationIntegration(r2, v2, dt);
return PoseRTV(t2, r2, v2);
}
/* ************************************************************************* */
Vector6 PoseRTV::imuPrediction(const PoseRTV& x2, double dt) const {
// split out states
const Rot3 &r1 = R(), &r2 = x2.R();
const Velocity3 &v1 = v(), &v2 = x2.v();
Vector6 imu;
// acceleration
Vector3 accel = (v2-v1).vector() / dt;
imu.head<3>() = r2.transpose() * (accel - g);
// rotation rates
// just using euler angles based on matlab code
// FIXME: this is silly - we shouldn't use differences in Euler angles
Matrix Enb = RRTMnb(r1);
Vector3 euler1 = r1.xyz(), euler2 = r2.xyz();
Vector3 dR = euler2 - euler1;
// normalize yaw in difference (as per Mitch's code)
dR(2) = Rot2::fromAngle(dR(2)).theta();
dR /= dt;
imu.tail<3>() = Enb * dR;
// imu.tail(3) = r1.transpose() * dR;
return imu;
}
/* ************************************************************************* */
Point3 PoseRTV::translationIntegration(const Rot3& r2, const Velocity3& v2, double dt) const {
// predict point for constraint
// NOTE: uses simple Euler approach for prediction
Point3 pred_t2 = t() + v2 * dt;
return pred_t2;
}
/* ************************************************************************* */
double range_(const PoseRTV& A, const PoseRTV& B) { return A.range(B); }
double PoseRTV::range(const PoseRTV& other,
OptionalJacobian<1,9> H1, OptionalJacobian<1,9> H2) const {
if (H1) *H1 = numericalDerivative21(range_, *this, other, 1e-5);
if (H2) *H2 = numericalDerivative22(range_, *this, other, 1e-5);
return t().distance(other.t());
}
/* ************************************************************************* */
PoseRTV transformed_from_(const PoseRTV& global, const Pose3& transform) {
return global.transformed_from(transform);
}
PoseRTV PoseRTV::transformed_from(const Pose3& trans, ChartJacobian Dglobal,
OptionalJacobian<9, 6> Dtrans) const {
// Note that we rotate the velocity
Matrix DVr, DTt;
Velocity3 newvel = trans.rotation().rotate(v_, DVr, DTt);
if (!Dglobal && !Dtrans)
return PoseRTV(trans.compose(pose()), newvel);
// Pose3 transform is just compose
Matrix DTc, DGc;
Pose3 newpose = trans.compose(pose(), DTc, DGc);
if (Dglobal) {
*Dglobal = zeros(9,9);
insertSub(*Dglobal, DGc, 0, 0);
// Rotate velocity
insertSub(*Dglobal, eye(3,3), 6, 6); // FIXME: should this actually be an identity matrix?
}
if (Dtrans) {
*Dtrans = numericalDerivative22(transformed_from_, *this, trans, 1e-8);
//
// *Dtrans = zeros(9,6);
// // directly affecting the pose
// insertSub(*Dtrans, DTc, 0, 0); // correct in tests
//
// // rotating the velocity
// Matrix vRhat = skewSymmetric(-v_.x(), -v_.y(), -v_.z());
// trans.rotation().print("Transform rotation");
// gtsam::print(vRhat, "vRhat");
// gtsam::print(DVr, "DVr");
// // FIXME: find analytic derivative
//// insertSub(*Dtrans, vRhat, 6, 0); // works if PoseRTV.rotation() = I
//// insertSub(*Dtrans, trans.rotation().matrix() * vRhat, 6, 0); // FAIL: both tests fail
}
return PoseRTV(newpose, newvel);
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMbn(const Vector& euler) {
assert(euler.size() == 3);
const double s1 = sin(euler(1-1)), c1 = cos(euler(1-1));
const double t2 = tan(euler(2-1)), c2 = cos(euler(2-1));
Matrix Ebn(3,3);
Ebn << 1.0, s1 * t2, c1 * t2,
0.0, c1, -s1,
0.0, s1 / c2, c1 / c2;
return Ebn;
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMbn(const Rot3& att) {
return PoseRTV::RRTMbn(att.rpy());
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMnb(const Vector& euler) {
assert(euler.size() == 3);
Matrix Enb(3,3);
const double s1 = sin(euler(1-1)), c1 = cos(euler(1-1));
const double s2 = sin(euler(2-1)), c2 = cos(euler(2-1));
Enb << 1.0, 0.0, -s2,
0.0, c1, s1*c2,
0.0, -s1, c1*c2;
return Enb;
}
/* ************************************************************************* */
Matrix PoseRTV::RRTMnb(const Rot3& att) {
return PoseRTV::RRTMnb(att.rpy());
}
/* ************************************************************************* */
} // \namespace gtsam