gtsam/gtsam/linear/SubgraphSolver.h

135 lines
4.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SubgraphSolver.h
* @brief Subgraph Solver from IROS 2010
* @date 2010
* @author Frank Dellaert
* @author Yong Dian Jian
*/
#pragma once
#include <gtsam/linear/ConjugateGradientSolver.h>
namespace gtsam {
// Forward declarations
class GaussianFactorGraph;
class GaussianBayesNet;
class SubgraphPreconditioner;
class GTSAM_EXPORT SubgraphSolverParameters: public ConjugateGradientParameters {
public:
typedef ConjugateGradientParameters Base;
SubgraphSolverParameters() :
Base() {
}
void print() const {
Base::print();
}
virtual void print(std::ostream &os) const {
Base::print(os);
}
};
/**
* This class implements the SPCG solver presented in Dellaert et al in IROS'10.
*
* Given a linear least-squares problem \f$ f(x) = |A x - b|^2 \f$. We split the problem into
* \f$ f(x) = |A_t - b_t|^2 + |A_c - b_c|^2 \f$ where \f$ A_t \f$ denotes the "tree" part, and \f$ A_c \f$ denotes the "constraint" part.
* \f$ A_t \f$ is factorized into \f$ Q_t R_t \f$, and we compute \f$ c_t = Q_t^{-1} b_t \f$, and \f$ x_t = R_t^{-1} c_t \f$ accordingly.
* Then we solve a reparametrized problem \f$ f(y) = |y|^2 + |A_c R_t^{-1} y - \bar{b_y}|^2 \f$, where \f$ y = R_t(x - x_t) \f$, and \f$ \bar{b_y} = (b_c - A_c x_t) \f$
*
* In the matrix form, it is equivalent to solving \f$ [A_c R_t^{-1} ; I ] y = [\bar{b_y} ; 0] \f$. We can solve it
* with the least-squares variation of the conjugate gradient method.
*
* To use it in nonlinear optimization, please see the following example
*
* LevenbergMarquardtParams parameters;
* parameters.linearSolverType = NonlinearOptimizerParams::CONJUGATE_GRADIENT;
* parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
* LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
* Values result = optimizer.optimize();
*
* \nosubgrouping
*/
class GTSAM_EXPORT SubgraphSolver: public IterativeSolver {
public:
typedef SubgraphSolverParameters Parameters;
protected:
Parameters parameters_;
Ordering ordering_;
boost::shared_ptr<SubgraphPreconditioner> pc_; ///< preconditioner object
public:
/// Given a gaussian factor graph, split it into a spanning tree (A1) + others (A2) for SPCG
SubgraphSolver(const GaussianFactorGraph &A, const Parameters &parameters,
const Ordering& ordering);
/// Shared pointer version
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &A,
const Parameters &parameters, const Ordering& ordering);
/**
* The user specify the subgraph part and the constraint part
* may throw exception if A1 is underdetermined
*/
SubgraphSolver(const GaussianFactorGraph &Ab1, const GaussianFactorGraph &Ab2,
const Parameters &parameters, const Ordering& ordering);
/// Shared pointer version
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &Ab1,
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
const Parameters &parameters, const Ordering& ordering);
/* The same as above, but the A1 is solved before */
SubgraphSolver(const boost::shared_ptr<GaussianBayesNet> &Rc1,
const GaussianFactorGraph &Ab2, const Parameters &parameters,
const Ordering& ordering);
/// Shared pointer version
SubgraphSolver(const boost::shared_ptr<GaussianBayesNet> &Rc1,
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
const Parameters &parameters, const Ordering& ordering);
/// Destructor
virtual ~SubgraphSolver() {
}
/// Optimize from zero
VectorValues optimize();
/// Optimize from given initial values
VectorValues optimize(const VectorValues &initial);
/** Interface that IterativeSolver subclasses have to implement */
virtual VectorValues optimize(const GaussianFactorGraph &gfg,
const KeyInfo &keyInfo, const std::map<Key, Vector> &lambda,
const VectorValues &initial);
protected:
void initialize(const GaussianFactorGraph &jfg);
void initialize(const boost::shared_ptr<GaussianBayesNet> &Rc1,
const boost::shared_ptr<GaussianFactorGraph> &Ab2);
boost::tuple<boost::shared_ptr<GaussianFactorGraph>,
boost::shared_ptr<GaussianFactorGraph> >
splitGraph(const GaussianFactorGraph &gfg);
};
} // namespace gtsam