gtsam/examples/matlab/VisualISAMExample.m

110 lines
3.7 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief A simple visual SLAM example for structure from motion
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create a triangle target, just 3 points on a plane
nPoints = 3;
r = 10;
points = {};
for j=1:nPoints
theta = (j-1)*2*pi/nPoints;
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
end
%% Create camera cameras on a circle around the triangle
nCameras = 10;
height = 10;
r = 30;
cameras = {};
K = gtsamCal3_S2(500,500,0,640/2,480/2);
for i=1:nCameras
theta = (i-1)*2*pi/nCameras;
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
end
odometry = cameras{1}.pose.between(cameras{2}.pose);
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
%% Create an ISAM object for inference
isam = visualSLAMISAM;
%% Update ISAM
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
for i=1:nCameras
% Prior for the first pose or odometry for subsequent cameras
if (i==1)
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
for j=1:nPoints
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
end
else
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, poseNoise);
end
% Visual measurement factors
for j=1:nPoints
zij = cameras{i}.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
end
% Initial estimates for the new pose. Also initialize points while in
% the first frame.
if (i==1)
initialEstimates.insertPose(symbol('x',i), cameras{i}.pose);
for j=1:size(points,2)
initialEstimates.insertPoint(symbol('l',j), points{j});
end
else
%TODO: this might be suboptimal since "result" is not the fully
%optimized result
if (i==2), prevPose = cameras{1}.pose;
else, prevPose = result.pose(symbol('x',i-1)); end
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
end
% Update ISAM, only update for the second frame onward
% Update the first frame will cause error, since it's under constrained
if (i>=2)
isam.update(newFactors, initialEstimates);
emptyFactors = visualSLAMGraph;
emptyEstimates = visualSLAMValues;
result = isam.estimate();
% Plot first result
h=figure(1);clf
hold on;
for j=1:size(points,2)
P = isam.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for ii=1:i
P = isam.marginalCovariance(symbol('x',ii));
pose_ii = result.pose(symbol('x',ii));
plotPose3(pose_ii,P,10);
end
axis([-50 50 -50 50 -50 50])
colormap('hot')
%print(h,'-dpng',sprintf('VisualISAM_%03d.png',i));
% Reset newFactors and initialEstimates to prepare for the next
% update
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
end
end