380 lines
9.9 KiB
C++
380 lines
9.9 KiB
C++
/**
|
|
* @file testGaussianFactor.cpp
|
|
* @brief Unit tests for Linear Factor
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <iostream>
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign/std/set.hpp>
|
|
#include <boost/assign/std/map.hpp> // for insert
|
|
using namespace boost::assign;
|
|
|
|
#include <gtsam/CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/linear/GaussianConditional.h>
|
|
#include <gtsam/inference/inference-inl.h>
|
|
#include <gtsam/slam/smallExample.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
using namespace boost;
|
|
|
|
static SharedDiagonal
|
|
sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
|
|
constraintModel = noiseModel::Constrained::All(2);
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, linearFactor )
|
|
{
|
|
Matrix I = eye(2);
|
|
Vector b = Vector_(2, 2.0, -1.0);
|
|
GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2));
|
|
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// check if the two factors are the same
|
|
CHECK(assert_equal(expected,*lf));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, keys )
|
|
{
|
|
// get the factor "f2" from the small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
list<Symbol> expected;
|
|
expected.push_back("x1");
|
|
expected.push_back("x2");
|
|
CHECK(lf->keys() == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, dimensions )
|
|
{
|
|
// get the factor "f2" from the small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// Check a single factor
|
|
Dimensions expected;
|
|
insert(expected)("x1", 2)("x2", 2);
|
|
Dimensions actual = fg[1]->dimensions();
|
|
CHECK(expected==actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, getDim )
|
|
{
|
|
// get a factor
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
GaussianFactor::shared_ptr factor = fg[0];
|
|
|
|
// get the size of a variable
|
|
size_t actual = factor->getDim("x1");
|
|
|
|
// verify
|
|
size_t expected = 2;
|
|
CHECK(actual == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, combine )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get two factors from it and insert the factors into a vector
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(fg[4 - 1]);
|
|
lfg.push_back(fg[2 - 1]);
|
|
|
|
// combine in a factor
|
|
GaussianFactor combined(lfg);
|
|
|
|
// sigmas
|
|
double sigma2 = 0.1;
|
|
double sigma4 = 0.2;
|
|
Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
|
|
|
|
// the expected combined linear factor
|
|
Matrix Ax2 = Matrix_(4, 2, // x2
|
|
-5., 0.,
|
|
+0., -5.,
|
|
10., 0.,
|
|
+0., 10.);
|
|
|
|
Matrix Al1 = Matrix_(4, 2, // l1
|
|
5., 0.,
|
|
0., 5.,
|
|
0., 0.,
|
|
0., 0.);
|
|
|
|
Matrix Ax1 = Matrix_(4, 2, // x1
|
|
0.00, 0., // f4
|
|
0.00, 0., // f4
|
|
-10., 0., // f2
|
|
0.00, -10. // f2
|
|
);
|
|
|
|
// the RHS
|
|
Vector b2(4);
|
|
b2(0) = -1.0;
|
|
b2(1) = 1.5;
|
|
b2(2) = 2.0;
|
|
b2(3) = -1.0;
|
|
|
|
// use general constructor for making arbitrary factors
|
|
vector<pair<Symbol, Matrix> > meas;
|
|
meas.push_back(make_pair("x2", Ax2));
|
|
meas.push_back(make_pair("l1", Al1));
|
|
meas.push_back(make_pair("x1", Ax1));
|
|
GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
|
|
CHECK(assert_equal(expected,combined));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, error )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the first factor from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[0];
|
|
|
|
// check the error of the first factor with noisy config
|
|
VectorConfig cfg = createZeroDelta();
|
|
|
|
// calculate the error from the factor "f1"
|
|
// note the error is the same as in testNonlinearFactor
|
|
double actual = lf->error(cfg);
|
|
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, eliminate )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get two factors from it and insert the factors into a vector
|
|
vector<GaussianFactor::shared_ptr> lfg;
|
|
lfg.push_back(fg[4 - 1]);
|
|
lfg.push_back(fg[2 - 1]);
|
|
|
|
// combine in a factor
|
|
GaussianFactor combined(lfg);
|
|
|
|
// eliminate the combined factor
|
|
GaussianConditional::shared_ptr actualCG;
|
|
GaussianFactor::shared_ptr actualLF;
|
|
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
|
|
|
|
// create expected Conditional Gaussian
|
|
Matrix I = eye(2)*sqrt(125.0);
|
|
Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
|
|
Vector d = I*Vector_(2,0.2,-0.14);
|
|
|
|
// Check the conditional Gaussian
|
|
GaussianConditional
|
|
expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0));
|
|
|
|
// the expected linear factor
|
|
I = eye(2)/0.2236;
|
|
Matrix Bl1 = I, Bx1 = -I;
|
|
Vector b1 = I*Vector_(2,0.0,0.2);
|
|
|
|
GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0));
|
|
|
|
// check if the result matches
|
|
CHECK(assert_equal(expectedCG,*actualCG,1e-3));
|
|
CHECK(assert_equal(expectedLF,*actualLF,1e-3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
// Test whitened version
|
|
Matrix A_act1; Vector b_act1;
|
|
boost::tie(A_act1,b_act1) = lf->matrix(ord, true);
|
|
|
|
Matrix A1 = Matrix_(2,4,
|
|
-10.0, 0.0, 10.0, 0.0,
|
|
000.0,-10.0, 0.0, 10.0 );
|
|
Vector b1 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act1,A1);
|
|
EQUALITY(b_act1,b1);
|
|
|
|
// Test unwhitened version
|
|
Matrix A_act2; Vector b_act2;
|
|
boost::tie(A_act2,b_act2) = lf->matrix(ord, false);
|
|
|
|
|
|
Matrix A2 = Matrix_(2,4,
|
|
-1.0, 0.0, 1.0, 0.0,
|
|
000.0,-1.0, 0.0, 1.0 );
|
|
//Vector b2 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act2,A2);
|
|
EQUALITY(b_act2,b2);
|
|
|
|
// Ensure that whitening is consistent
|
|
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenSystem(A_act2, b_act2);
|
|
EQUALITY(A_act1, A_act2);
|
|
EQUALITY(b_act1, b_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix_aug )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1];
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
// Test unwhitened version
|
|
Matrix Ab_act1;
|
|
Ab_act1 = lf->matrix_augmented(ord, false);
|
|
|
|
Matrix Ab1 = Matrix_(2,5,
|
|
-1.0, 0.0, 1.0, 0.0, 0.2,
|
|
00.0,- 1.0, 0.0, 1.0, -0.1 );
|
|
|
|
EQUALITY(Ab_act1,Ab1);
|
|
|
|
// Test whitened version
|
|
Matrix Ab_act2;
|
|
Ab_act2 = lf->matrix_augmented(ord, true);
|
|
|
|
Matrix Ab2 = Matrix_(2,5,
|
|
-10.0, 0.0, 10.0, 0.0, 2.0,
|
|
00.0, -10.0, 0.0, 10.0, -1.0 );
|
|
|
|
EQUALITY(Ab_act2,Ab2);
|
|
|
|
// Ensure that whitening is consistent
|
|
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenInPlace(Ab_act1);
|
|
EQUALITY(Ab_act1, Ab_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// small aux. function to print out lists of anything
|
|
template<class T>
|
|
void print(const list<T>& i) {
|
|
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, sparse )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x1","x2";
|
|
|
|
list<int> i,j;
|
|
list<double> s;
|
|
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
|
|
|
|
list<int> i1,j1;
|
|
i1 += 1,2,1,2;
|
|
j1 += 1,2,3,4;
|
|
|
|
list<double> s1;
|
|
s1 += -10,-10,10,10;
|
|
|
|
CHECK(i==i1);
|
|
CHECK(j==j1);
|
|
CHECK(s==s1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, sparse2 )
|
|
{
|
|
// create a small linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get the factor "f2" from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[1];
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x2","l1","x1";
|
|
|
|
list<int> i,j;
|
|
list<double> s;
|
|
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
|
|
|
|
list<int> i1,j1;
|
|
i1 += 1,2,1,2;
|
|
j1 += 5,6,1,2;
|
|
|
|
list<double> s1;
|
|
s1 += -10,-10,10,10;
|
|
|
|
CHECK(i==i1);
|
|
CHECK(j==j1);
|
|
CHECK(s==s1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, size )
|
|
{
|
|
// create a linear factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// get some factors from the graph
|
|
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
|
|
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
|
|
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
|
|
|
|
CHECK(factor1->size() == 1);
|
|
CHECK(factor2->size() == 2);
|
|
CHECK(factor3->size() == 2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|