gtsam/tests/testGaussianFactor.cpp

380 lines
9.9 KiB
C++

/**
* @file testGaussianFactor.cpp
* @brief Unit tests for Linear Factor
* @author Christian Potthast
* @author Frank Dellaert
**/
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp>
#include <boost/assign/std/map.hpp> // for insert
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <gtsam/base/Matrix.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/inference/inference-inl.h>
#include <gtsam/slam/smallExample.h>
using namespace std;
using namespace gtsam;
using namespace example;
using namespace boost;
static SharedDiagonal
sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
constraintModel = noiseModel::Constrained::All(2);
/* ************************************************************************* */
TEST( GaussianFactor, linearFactor )
{
Matrix I = eye(2);
Vector b = Vector_(2, 2.0, -1.0);
GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2));
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the factor "f2" from the factor graph
GaussianFactor::shared_ptr lf = fg[1];
// check if the two factors are the same
CHECK(assert_equal(expected,*lf));
}
/* ************************************************************************* */
TEST( GaussianFactor, keys )
{
// get the factor "f2" from the small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianFactor::shared_ptr lf = fg[1];
list<Symbol> expected;
expected.push_back("x1");
expected.push_back("x2");
CHECK(lf->keys() == expected);
}
/* ************************************************************************* */
TEST( GaussianFactor, dimensions )
{
// get the factor "f2" from the small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// Check a single factor
Dimensions expected;
insert(expected)("x1", 2)("x2", 2);
Dimensions actual = fg[1]->dimensions();
CHECK(expected==actual);
}
/* ************************************************************************* */
TEST( GaussianFactor, getDim )
{
// get a factor
GaussianFactorGraph fg = createGaussianFactorGraph();
GaussianFactor::shared_ptr factor = fg[0];
// get the size of a variable
size_t actual = factor->getDim("x1");
// verify
size_t expected = 2;
CHECK(actual == expected);
}
/* ************************************************************************* */
TEST( GaussianFactor, combine )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get two factors from it and insert the factors into a vector
vector<GaussianFactor::shared_ptr> lfg;
lfg.push_back(fg[4 - 1]);
lfg.push_back(fg[2 - 1]);
// combine in a factor
GaussianFactor combined(lfg);
// sigmas
double sigma2 = 0.1;
double sigma4 = 0.2;
Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
// the expected combined linear factor
Matrix Ax2 = Matrix_(4, 2, // x2
-5., 0.,
+0., -5.,
10., 0.,
+0., 10.);
Matrix Al1 = Matrix_(4, 2, // l1
5., 0.,
0., 5.,
0., 0.,
0., 0.);
Matrix Ax1 = Matrix_(4, 2, // x1
0.00, 0., // f4
0.00, 0., // f4
-10., 0., // f2
0.00, -10. // f2
);
// the RHS
Vector b2(4);
b2(0) = -1.0;
b2(1) = 1.5;
b2(2) = 2.0;
b2(3) = -1.0;
// use general constructor for making arbitrary factors
vector<pair<Symbol, Matrix> > meas;
meas.push_back(make_pair("x2", Ax2));
meas.push_back(make_pair("l1", Al1));
meas.push_back(make_pair("x1", Ax1));
GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
CHECK(assert_equal(expected,combined));
}
/* ************************************************************************* */
TEST( GaussianFactor, error )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the first factor from the factor graph
GaussianFactor::shared_ptr lf = fg[0];
// check the error of the first factor with noisy config
VectorConfig cfg = createZeroDelta();
// calculate the error from the factor "f1"
// note the error is the same as in testNonlinearFactor
double actual = lf->error(cfg);
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
}
/* ************************************************************************* */
TEST( GaussianFactor, eliminate )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get two factors from it and insert the factors into a vector
vector<GaussianFactor::shared_ptr> lfg;
lfg.push_back(fg[4 - 1]);
lfg.push_back(fg[2 - 1]);
// combine in a factor
GaussianFactor combined(lfg);
// eliminate the combined factor
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
// create expected Conditional Gaussian
Matrix I = eye(2)*sqrt(125.0);
Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
Vector d = I*Vector_(2,0.2,-0.14);
// Check the conditional Gaussian
GaussianConditional
expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0));
// the expected linear factor
I = eye(2)/0.2236;
Matrix Bl1 = I, Bx1 = -I;
Vector b1 = I*Vector_(2,0.0,0.2);
GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0));
// check if the result matches
CHECK(assert_equal(expectedCG,*actualCG,1e-3));
CHECK(assert_equal(expectedLF,*actualLF,1e-3));
}
/* ************************************************************************* */
TEST( GaussianFactor, matrix )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the factor "f2" from the factor graph
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
// render with a given ordering
Ordering ord;
ord += "x1","x2";
// Test whitened version
Matrix A_act1; Vector b_act1;
boost::tie(A_act1,b_act1) = lf->matrix(ord, true);
Matrix A1 = Matrix_(2,4,
-10.0, 0.0, 10.0, 0.0,
000.0,-10.0, 0.0, 10.0 );
Vector b1 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act1,A1);
EQUALITY(b_act1,b1);
// Test unwhitened version
Matrix A_act2; Vector b_act2;
boost::tie(A_act2,b_act2) = lf->matrix(ord, false);
Matrix A2 = Matrix_(2,4,
-1.0, 0.0, 1.0, 0.0,
000.0,-1.0, 0.0, 1.0 );
//Vector b2 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act2,A2);
EQUALITY(b_act2,b2);
// Ensure that whitening is consistent
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenSystem(A_act2, b_act2);
EQUALITY(A_act1, A_act2);
EQUALITY(b_act1, b_act2);
}
/* ************************************************************************* */
TEST( GaussianFactor, matrix_aug )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the factor "f2" from the factor graph
//GaussianFactor::shared_ptr lf = fg[1];
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
// render with a given ordering
Ordering ord;
ord += "x1","x2";
// Test unwhitened version
Matrix Ab_act1;
Ab_act1 = lf->matrix_augmented(ord, false);
Matrix Ab1 = Matrix_(2,5,
-1.0, 0.0, 1.0, 0.0, 0.2,
00.0,- 1.0, 0.0, 1.0, -0.1 );
EQUALITY(Ab_act1,Ab1);
// Test whitened version
Matrix Ab_act2;
Ab_act2 = lf->matrix_augmented(ord, true);
Matrix Ab2 = Matrix_(2,5,
-10.0, 0.0, 10.0, 0.0, 2.0,
00.0, -10.0, 0.0, 10.0, -1.0 );
EQUALITY(Ab_act2,Ab2);
// Ensure that whitening is consistent
shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenInPlace(Ab_act1);
EQUALITY(Ab_act1, Ab_act2);
}
/* ************************************************************************* */
// small aux. function to print out lists of anything
template<class T>
void print(const list<T>& i) {
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
cout << endl;
}
/* ************************************************************************* */
TEST( GaussianFactor, sparse )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the factor "f2" from the factor graph
GaussianFactor::shared_ptr lf = fg[1];
// render with a given ordering
Ordering ord;
ord += "x1","x2";
list<int> i,j;
list<double> s;
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
list<int> i1,j1;
i1 += 1,2,1,2;
j1 += 1,2,3,4;
list<double> s1;
s1 += -10,-10,10,10;
CHECK(i==i1);
CHECK(j==j1);
CHECK(s==s1);
}
/* ************************************************************************* */
TEST( GaussianFactor, sparse2 )
{
// create a small linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get the factor "f2" from the factor graph
GaussianFactor::shared_ptr lf = fg[1];
// render with a given ordering
Ordering ord;
ord += "x2","l1","x1";
list<int> i,j;
list<double> s;
boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
list<int> i1,j1;
i1 += 1,2,1,2;
j1 += 5,6,1,2;
list<double> s1;
s1 += -10,-10,10,10;
CHECK(i==i1);
CHECK(j==j1);
CHECK(s==s1);
}
/* ************************************************************************* */
TEST( GaussianFactor, size )
{
// create a linear factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// get some factors from the graph
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
CHECK(factor1->size() == 1);
CHECK(factor2->size() == 2);
CHECK(factor3->size() == 2);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */