/** * @file testGaussianFactor.cpp * @brief Unit tests for Linear Factor * @author Christian Potthast * @author Frank Dellaert **/ #include #include #include // for operator += #include #include // for insert using namespace boost::assign; #include #define GTSAM_MAGIC_KEY #include #include #include #include #include using namespace std; using namespace gtsam; using namespace example; using namespace boost; static SharedDiagonal sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2), constraintModel = noiseModel::Constrained::All(2); /* ************************************************************************* */ TEST( GaussianFactor, linearFactor ) { Matrix I = eye(2); Vector b = Vector_(2, 2.0, -1.0); GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2)); // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the factor "f2" from the factor graph GaussianFactor::shared_ptr lf = fg[1]; // check if the two factors are the same CHECK(assert_equal(expected,*lf)); } /* ************************************************************************* */ TEST( GaussianFactor, keys ) { // get the factor "f2" from the small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); GaussianFactor::shared_ptr lf = fg[1]; list expected; expected.push_back("x1"); expected.push_back("x2"); CHECK(lf->keys() == expected); } /* ************************************************************************* */ TEST( GaussianFactor, dimensions ) { // get the factor "f2" from the small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // Check a single factor Dimensions expected; insert(expected)("x1", 2)("x2", 2); Dimensions actual = fg[1]->dimensions(); CHECK(expected==actual); } /* ************************************************************************* */ TEST( GaussianFactor, getDim ) { // get a factor GaussianFactorGraph fg = createGaussianFactorGraph(); GaussianFactor::shared_ptr factor = fg[0]; // get the size of a variable size_t actual = factor->getDim("x1"); // verify size_t expected = 2; CHECK(actual == expected); } /* ************************************************************************* */ TEST( GaussianFactor, combine ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get two factors from it and insert the factors into a vector vector lfg; lfg.push_back(fg[4 - 1]); lfg.push_back(fg[2 - 1]); // combine in a factor GaussianFactor combined(lfg); // sigmas double sigma2 = 0.1; double sigma4 = 0.2; Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2); // the expected combined linear factor Matrix Ax2 = Matrix_(4, 2, // x2 -5., 0., +0., -5., 10., 0., +0., 10.); Matrix Al1 = Matrix_(4, 2, // l1 5., 0., 0., 5., 0., 0., 0., 0.); Matrix Ax1 = Matrix_(4, 2, // x1 0.00, 0., // f4 0.00, 0., // f4 -10., 0., // f2 0.00, -10. // f2 ); // the RHS Vector b2(4); b2(0) = -1.0; b2(1) = 1.5; b2(2) = 2.0; b2(3) = -1.0; // use general constructor for making arbitrary factors vector > meas; meas.push_back(make_pair("x2", Ax2)); meas.push_back(make_pair("l1", Al1)); meas.push_back(make_pair("x1", Ax1)); GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4))); CHECK(assert_equal(expected,combined)); } /* ************************************************************************* */ TEST( GaussianFactor, error ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the first factor from the factor graph GaussianFactor::shared_ptr lf = fg[0]; // check the error of the first factor with noisy config VectorConfig cfg = createZeroDelta(); // calculate the error from the factor "f1" // note the error is the same as in testNonlinearFactor double actual = lf->error(cfg); DOUBLES_EQUAL( 1.0, actual, 0.00000001 ); } /* ************************************************************************* */ TEST( GaussianFactor, eliminate ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get two factors from it and insert the factors into a vector vector lfg; lfg.push_back(fg[4 - 1]); lfg.push_back(fg[2 - 1]); // combine in a factor GaussianFactor combined(lfg); // eliminate the combined factor GaussianConditional::shared_ptr actualCG; GaussianFactor::shared_ptr actualLF; boost::tie(actualCG,actualLF) = combined.eliminate("x2"); // create expected Conditional Gaussian Matrix I = eye(2)*sqrt(125.0); Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I; Vector d = I*Vector_(2,0.2,-0.14); // Check the conditional Gaussian GaussianConditional expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0)); // the expected linear factor I = eye(2)/0.2236; Matrix Bl1 = I, Bx1 = -I; Vector b1 = I*Vector_(2,0.0,0.2); GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0)); // check if the result matches CHECK(assert_equal(expectedCG,*actualCG,1e-3)); CHECK(assert_equal(expectedLF,*actualLF,1e-3)); } /* ************************************************************************* */ TEST( GaussianFactor, matrix ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the factor "f2" from the factor graph //GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version Vector b2 = Vector_(2, 0.2, -0.1); Matrix I = eye(2); GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1)); // render with a given ordering Ordering ord; ord += "x1","x2"; // Test whitened version Matrix A_act1; Vector b_act1; boost::tie(A_act1,b_act1) = lf->matrix(ord, true); Matrix A1 = Matrix_(2,4, -10.0, 0.0, 10.0, 0.0, 000.0,-10.0, 0.0, 10.0 ); Vector b1 = Vector_(2, 2.0, -1.0); EQUALITY(A_act1,A1); EQUALITY(b_act1,b1); // Test unwhitened version Matrix A_act2; Vector b_act2; boost::tie(A_act2,b_act2) = lf->matrix(ord, false); Matrix A2 = Matrix_(2,4, -1.0, 0.0, 1.0, 0.0, 000.0,-1.0, 0.0, 1.0 ); //Vector b2 = Vector_(2, 2.0, -1.0); EQUALITY(A_act2,A2); EQUALITY(b_act2,b2); // Ensure that whitening is consistent shared_ptr model = lf->get_model(); model->WhitenSystem(A_act2, b_act2); EQUALITY(A_act1, A_act2); EQUALITY(b_act1, b_act2); } /* ************************************************************************* */ TEST( GaussianFactor, matrix_aug ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the factor "f2" from the factor graph //GaussianFactor::shared_ptr lf = fg[1]; Vector b2 = Vector_(2, 0.2, -0.1); Matrix I = eye(2); GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1)); // render with a given ordering Ordering ord; ord += "x1","x2"; // Test unwhitened version Matrix Ab_act1; Ab_act1 = lf->matrix_augmented(ord, false); Matrix Ab1 = Matrix_(2,5, -1.0, 0.0, 1.0, 0.0, 0.2, 00.0,- 1.0, 0.0, 1.0, -0.1 ); EQUALITY(Ab_act1,Ab1); // Test whitened version Matrix Ab_act2; Ab_act2 = lf->matrix_augmented(ord, true); Matrix Ab2 = Matrix_(2,5, -10.0, 0.0, 10.0, 0.0, 2.0, 00.0, -10.0, 0.0, 10.0, -1.0 ); EQUALITY(Ab_act2,Ab2); // Ensure that whitening is consistent shared_ptr model = lf->get_model(); model->WhitenInPlace(Ab_act1); EQUALITY(Ab_act1, Ab_act2); } /* ************************************************************************* */ // small aux. function to print out lists of anything template void print(const list& i) { copy(i.begin(), i.end(), ostream_iterator (cout, ",")); cout << endl; } /* ************************************************************************* */ TEST( GaussianFactor, sparse ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the factor "f2" from the factor graph GaussianFactor::shared_ptr lf = fg[1]; // render with a given ordering Ordering ord; ord += "x1","x2"; list i,j; list s; boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord)); list i1,j1; i1 += 1,2,1,2; j1 += 1,2,3,4; list s1; s1 += -10,-10,10,10; CHECK(i==i1); CHECK(j==j1); CHECK(s==s1); } /* ************************************************************************* */ TEST( GaussianFactor, sparse2 ) { // create a small linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get the factor "f2" from the factor graph GaussianFactor::shared_ptr lf = fg[1]; // render with a given ordering Ordering ord; ord += "x2","l1","x1"; list i,j; list s; boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord)); list i1,j1; i1 += 1,2,1,2; j1 += 5,6,1,2; list s1; s1 += -10,-10,10,10; CHECK(i==i1); CHECK(j==j1); CHECK(s==s1); } /* ************************************************************************* */ TEST( GaussianFactor, size ) { // create a linear factor graph GaussianFactorGraph fg = createGaussianFactorGraph(); // get some factors from the graph boost::shared_ptr factor1 = fg[0]; boost::shared_ptr factor2 = fg[1]; boost::shared_ptr factor3 = fg[2]; CHECK(factor1->size() == 1); CHECK(factor2->size() == 2); CHECK(factor3->size() == 2); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */