601 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file ProjectionFactor.h
 | |
|  * @brief Basic bearing factor from 2D measurement
 | |
|  * @author Chris Beall
 | |
|  * @author Luca Carlone
 | |
|  * @author Zsolt Kira
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/geometry/PinholeCamera.h>
 | |
| #include <gtsam/geometry/Cal3Bundler.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/linear/HessianFactor.h>
 | |
| #include <vector>
 | |
| #include <gtsam_unstable/geometry/triangulation.h>
 | |
| #include <boost/optional.hpp>
 | |
| //#include <boost/assign.hpp>
 | |
| 
 | |
| static bool isDebug=false;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   // default threshold for selective relinearization
 | |
|   static double defaultLinThreshold = -1; // 1e-7; // 0.01
 | |
|   // default threshold for retriangulation
 | |
|   static double defaultTriangThreshold = 1e-5;
 | |
|   // default threshold for rank deficient triangulation
 | |
|   static double defaultRankTolerance = 1; // this value may be scenario-dependent and has to be larger in  presence of larger noise
 | |
|   // if set to true will use the rotation-only version for degenerate cases
 | |
|   static bool manageDegeneracy = true;
 | |
| 
 | |
|   /**
 | |
|    * Structure for storing some state memory, used to speed up optimization
 | |
|    * @addtogroup SLAM
 | |
|    */
 | |
|   class SmartProjectionHessianFactorState {
 | |
|   public:
 | |
| 
 | |
|     static int lastID;
 | |
|     int ID;
 | |
| 
 | |
|     SmartProjectionHessianFactorState() {
 | |
|       ID = lastID++;
 | |
|       calculatedHessian = false;
 | |
|     }
 | |
| 
 | |
|     // Linearization point
 | |
|     Values values;
 | |
|     std::vector<Pose3> cameraPosesLinearization;
 | |
| 
 | |
|     // Triangulation at current linearization point
 | |
|     Point3 point;
 | |
|     std::vector<Pose3> cameraPosesTriangulation;
 | |
|     bool degenerate;
 | |
|     bool cheiralityException;
 | |
| 
 | |
|     // Overall reprojection error
 | |
|     double overallError;
 | |
|     std::vector<Pose3> cameraPosesError;
 | |
| 
 | |
|     // Hessian representation (after Schur complement)
 | |
|     bool calculatedHessian;
 | |
|     Matrix H;
 | |
|     Vector gs_vector;
 | |
|     std::vector<Matrix> Gs;
 | |
|     std::vector<Vector> gs;
 | |
|     double f;
 | |
| 
 | |
|     // C = Hl'Hl
 | |
|     // Cinv = inv(Hl'Hl)
 | |
|     // Matrix3 Cinv;
 | |
|     // E = Hx'Hl
 | |
|     // w = Hl'b
 | |
|   };
 | |
| 
 | |
|   int SmartProjectionHessianFactorState::lastID = 0;
 | |
| 
 | |
|   /**
 | |
|    * The calibration is known here.
 | |
|    * @addtogroup SLAM
 | |
|    */
 | |
|   template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
 | |
|   class SmartProjectionHessianFactor: public NonlinearFactor {
 | |
|   protected:
 | |
| 
 | |
|     // Keep a copy of measurement and calibration for I/O
 | |
|     std::vector<Point2> measured_;                    ///< 2D measurement for each of the m views
 | |
|     std::vector< SharedNoiseModel > noise_;   ///< noise model used
 | |
|     ///< (important that the order is the same as the keys that we use to create the factor)
 | |
|     std::vector< boost::shared_ptr<CALIBRATION> > K_all_;  ///< shared pointer to calibration object (one for each camera)
 | |
| 
 | |
|     double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
 | |
| 
 | |
|     double rankTolerance; ///< threshold to decide whether triangulation is degenerate
 | |
| 
 | |
|     double linearizationThreshold; ///< threshold to decide whether to re-linearize
 | |
| 
 | |
|     boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for each camera)
 | |
| 
 | |
|     boost::shared_ptr<SmartProjectionHessianFactorState> state_;
 | |
| 
 | |
|     // verbosity handling for Cheirality Exceptions
 | |
|     bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
 | |
|     bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /// shorthand for base class type
 | |
|     typedef NonlinearFactor Base;
 | |
| 
 | |
|     /// shorthand for this class
 | |
|     typedef SmartProjectionHessianFactor<POSE, LANDMARK, CALIBRATION> This;
 | |
| 
 | |
|     /// shorthand for a smart pointer to a factor
 | |
|     typedef boost::shared_ptr<This> shared_ptr;
 | |
| 
 | |
|     /// shorthand for smart projection factor state variable
 | |
|     typedef boost::shared_ptr<SmartProjectionHessianFactorState> SmartFactorStatePtr;
 | |
| 
 | |
|     /**
 | |
|      * Constructor
 | |
|      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
 | |
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
 | |
|      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
 | |
|      * @param K shared pointer to the constant calibration
 | |
|      * @param body_P_sensor is the transform from body to sensor frame (default identity)
 | |
|      */
 | |
|     SmartProjectionHessianFactor(
 | |
|         const double rankTol = defaultRankTolerance,
 | |
|         const double linThreshold = defaultLinThreshold,
 | |
|         boost::optional<POSE> body_P_sensor = boost::none,
 | |
|         SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionHessianFactorState())) :
 | |
|           retriangulationThreshold(defaultTriangThreshold), rankTolerance(rankTol),
 | |
|           linearizationThreshold(linThreshold), body_P_sensor_(body_P_sensor),
 | |
|           state_(state), throwCheirality_(false), verboseCheirality_(false) {}
 | |
| 
 | |
| 
 | |
|     /** Virtual destructor */
 | |
|     virtual ~SmartProjectionHessianFactor() {}
 | |
| 
 | |
|     /**
 | |
|      * add a new measurement and pose key
 | |
|      * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
 | |
|      * @param poseKey is the index corresponding to the camera observing the same landmark
 | |
|      */
 | |
|     void add(const Point2 measured_i, const Key poseKey_i, const SharedNoiseModel noise_i,
 | |
|         const boost::shared_ptr<CALIBRATION> K_i) {
 | |
|       measured_.push_back(measured_i);
 | |
|       keys_.push_back(poseKey_i);
 | |
|       noise_.push_back(noise_i);
 | |
|       K_all_.push_back(K_i);
 | |
|     }
 | |
| 
 | |
|     void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, std::vector< SharedNoiseModel > noises,
 | |
|         std::vector< boost::shared_ptr<CALIBRATION> > Ks) {
 | |
|       for(size_t i = 0; i < measurements.size(); i++) {
 | |
|         measured_.push_back(measurements.at(i));
 | |
|         keys_.push_back(poseKeys.at(i));
 | |
|         noise_.push_back(noises.at(i));
 | |
|         K_all_.push_back(Ks.at(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, const SharedNoiseModel noise,
 | |
|         const boost::shared_ptr<CALIBRATION> K) {
 | |
|       for(size_t i = 0; i < measurements.size(); i++) {
 | |
|         measured_.push_back(measurements.at(i));
 | |
|         keys_.push_back(poseKeys.at(i));
 | |
|         noise_.push_back(noise);
 | |
|         K_all_.push_back(K);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This function checks if the new linearization point is the same as the one used for previous triangulation
 | |
|     // (if not, a new triangulation is needed)
 | |
|     static bool decideIfTriangulate(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double retriangulationThreshold) {
 | |
|       // several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
 | |
|       // Note that this is not yet "selecting linearization", that will come later, and we only check if the
 | |
|       // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
 | |
| 
 | |
|       // if we do not have a previous linearization point or the new linearization point includes more poses
 | |
|       if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
 | |
|         return true;
 | |
| 
 | |
|       for(size_t i = 0; i < cameraPoses.size(); i++) {
 | |
|           if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) {
 | |
|             return true; // at least two poses are different, hence we retriangulate
 | |
|           }
 | |
|       }
 | |
|       return false; // if we arrive to this point all poses are the same and we don't need re-triangulation
 | |
|     }
 | |
| 
 | |
|     // This function checks if the new linearization point is 'close'  to the previous one used for linearization
 | |
|     // (if not, a new linearization is needed)
 | |
|     static bool decideIfLinearize(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double linearizationThreshold) {
 | |
|       // "selective linearization"
 | |
|       // The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
 | |
|       // (we only care about the "rigidity" of the poses, not about their absolute pose)
 | |
| 
 | |
|       // if we do not have a previous linearization point or the new linearization point includes more poses
 | |
|       if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
 | |
|         return true;
 | |
| 
 | |
|       Pose3 firstCameraPose;
 | |
|       Pose3 firstCameraPoseOld;
 | |
| 
 | |
|       for(size_t i = 0; i < cameraPoses.size(); i++) {
 | |
| 
 | |
|           if(i==0){ // we store the initial pose, this is useful for selective re-linearization
 | |
|             firstCameraPose = cameraPoses[i];
 | |
|             firstCameraPoseOld = oldPoses[i];
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // we compare the poses in the frame of the first pose
 | |
|           Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]);
 | |
|           Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]);
 | |
| 
 | |
|           if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) {
 | |
|             return true; // at least two "relative" poses are different, hence we re-linerize
 | |
|           }
 | |
|       }
 | |
|       return false; // if we arrive to this point all poses are the same and we don't need re-linerize
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * print
 | |
|      * @param s optional string naming the factor
 | |
|      * @param keyFormatter optional formatter useful for printing Symbols
 | |
|      */
 | |
|     void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|       std::cout << s << "SmartProjectionHessianFactor, z = \n ";
 | |
|       BOOST_FOREACH(const Point2& p, measured_) {
 | |
|         std::cout << "measurement, p = "<< p << std::endl;
 | |
|       }
 | |
|       BOOST_FOREACH(const SharedNoiseModel& noise_i, noise_) {
 | |
|         noise_i->print("noise model = ");
 | |
|       }
 | |
|       if(this->body_P_sensor_){
 | |
|         this->body_P_sensor_->print("  sensor pose in body frame: ");
 | |
|       }
 | |
|       Base::print("", keyFormatter);
 | |
|     }
 | |
| 
 | |
|     /// equals
 | |
|     virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
 | |
|       const This *e = dynamic_cast<const This*>(&p);
 | |
| 
 | |
|       bool areMeasurementsEqual = true;
 | |
|       for(size_t i = 0; i < measured_.size(); i++) {
 | |
|         if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
 | |
|           areMeasurementsEqual = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return e
 | |
|           && Base::equals(p, tol)
 | |
|           && areMeasurementsEqual
 | |
|           //&& this->K_->equals(*e->K_all_, tol);
 | |
|           && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
 | |
|     }
 | |
| 
 | |
|     /// get the dimension of the factor (number of rows on linearization)
 | |
|     virtual size_t dim() const {
 | |
|         return 6*keys_.size();
 | |
|     }
 | |
| 
 | |
|     /// linearize returns a Hessianfactor that is an approximation of error(p)
 | |
|     virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
 | |
| 
 | |
|       bool blockwise = false;                  // the full matrix version in faster
 | |
|       int dim_landmark = 3;                    // for degenerate instances this will become 2 (direction-only information)
 | |
| 
 | |
|       // Create structures for Hessian Factors
 | |
|       unsigned int numKeys = keys_.size();
 | |
|       if(isDebug) {std::cout<< " numKeys = "<< numKeys<<std::endl; }
 | |
|       std::vector<Index> js;
 | |
|       std::vector<Matrix> Gs(numKeys*(numKeys+1)/2);
 | |
|       std::vector<Vector> gs(numKeys);
 | |
|       double f=0;
 | |
| 
 | |
|       // Collect all poses (Cameras)
 | |
|       std::vector<Pose3> cameraPoses;
 | |
|       BOOST_FOREACH(const Key& k, keys_) {
 | |
|         Pose3 cameraPose;
 | |
|         if(body_P_sensor_)    {   cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
 | |
|         else                  { cameraPose = values.at<Pose3>(k);}
 | |
|         cameraPoses.push_back(cameraPose);
 | |
|       }
 | |
| 
 | |
|       if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
 | |
|         state_->degenerate = true;
 | |
|         BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
 | |
|         BOOST_FOREACH(Vector& v, gs) v = zero(6);
 | |
|         return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed
 | |
|       }
 | |
| 
 | |
|       bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
 | |
| 
 | |
|       if(retriangulate) {// we store the current poses used for triangulation
 | |
|         state_->cameraPosesTriangulation = cameraPoses;
 | |
|       }
 | |
| 
 | |
|       if (retriangulate) {
 | |
|         // We triangulate the 3D position of the landmark
 | |
|         try {
 | |
|           state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance);
 | |
|           state_->degenerate = false;
 | |
|           state_->cheiralityException = false;
 | |
|         } catch( TriangulationUnderconstrainedException& e) {
 | |
|           // if TriangulationUnderconstrainedException can be
 | |
|           // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
 | |
|           // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
 | |
|           // in the second case we want to use a rotation-only smart factor
 | |
|           //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
 | |
|           state_->degenerate = true;
 | |
|           state_->cheiralityException = false;
 | |
|         } catch( TriangulationCheiralityException& e) {
 | |
|           // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
 | |
|           // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
 | |
|           //std::cout << e.what() << std::end;
 | |
|           state_->cheiralityException = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){
 | |
|         // std::cout << "In linearize: exception" << std::endl;
 | |
|         BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
 | |
|         BOOST_FOREACH(Vector& v, gs) v = zero(6);
 | |
|         return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
 | |
|       }
 | |
| 
 | |
|       if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
 | |
|         state_->degenerate = true;
 | |
|         dim_landmark = 2;
 | |
|       }
 | |
| 
 | |
|       bool doLinearize;
 | |
|       if (linearizationThreshold >= 0){//by convention if linearizationThreshold is negative we always relinearize
 | |
|         // std::cout << "Temporary disabled" << std::endl;
 | |
|         doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold);
 | |
|       }
 | |
|       else{
 | |
|         doLinearize = true;
 | |
|       }
 | |
| 
 | |
|       if (doLinearize) {
 | |
|         state_->cameraPosesLinearization = cameraPoses;
 | |
|       }
 | |
| 
 | |
|       if(!doLinearize){ // return the previous Hessian factor
 | |
|         // std::cout << "Using stored factors :) " << std::endl;
 | |
|         return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
 | |
|       }
 | |
| 
 | |
|       if (blockwise == false){ // version with full matrix multiplication
 | |
|         // ==========================================================================================================
 | |
|         Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys);
 | |
|         Matrix Hl2 = zeros(2 * numKeys, dim_landmark);
 | |
|         Vector b2 = zero(2 * numKeys);
 | |
| 
 | |
|         if(state_->degenerate){
 | |
|           for(size_t i = 0; i < measured_.size(); i++) {
 | |
|             Pose3 pose = cameraPoses.at(i);
 | |
|             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
 | |
|             if(i==0){ // first pose
 | |
|               state_->point = camera.backprojectPointAtInfinity(measured_.at(i));
 | |
|               // 3D parametrization of point at infinity: [px py 1]
 | |
|               // std::cout << "point_ " << state_->point<< std::endl;
 | |
|             }
 | |
|             Matrix Hxi, Hli;
 | |
|             Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
 | |
|             // std::cout << "Hxi \n" << Hxi<< std::endl;
 | |
|             // std::cout << "Hli \n" << Hli<< std::endl;
 | |
| 
 | |
|             noise_.at(i)-> WhitenSystem(Hxi, Hli, bi);
 | |
|             f += bi.squaredNorm();
 | |
| 
 | |
|             Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
 | |
|             Hl2.block( 2*i, 0, 2, 2  ) = Hli;
 | |
| 
 | |
|             subInsert(b2,bi,2*i);
 | |
|           }
 | |
|           // std::cout << "Hx2 \n" << Hx2<< std::endl;
 | |
|           // std::cout << "Hl2 \n" << Hl2<< std::endl;
 | |
|         }
 | |
|         else{
 | |
| 
 | |
|           for(size_t i = 0; i < measured_.size(); i++) {
 | |
|             Pose3 pose = cameraPoses.at(i);
 | |
|             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
 | |
|             Matrix Hxi, Hli;
 | |
| 
 | |
|             Vector bi;
 | |
|             try {
 | |
|               bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
 | |
|             } catch ( CheiralityException& e) {
 | |
|               std::cout << "Cheirality exception " << state_->ID << std::endl;
 | |
|               exit(EXIT_FAILURE);
 | |
|             }
 | |
|             noise_.at(i)-> WhitenSystem(Hxi, Hli, bi);
 | |
|             f += bi.squaredNorm();
 | |
| 
 | |
|             Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
 | |
|             Hl2.block( 2*i, 0, 2, 3  ) = Hli;
 | |
| 
 | |
|             subInsert(b2,bi,2*i);
 | |
|           }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         // Shur complement trick
 | |
|         Matrix H(6 * numKeys, 6 * numKeys);
 | |
|         Matrix C2;
 | |
|         Vector gs_vector;
 | |
| 
 | |
|         C2.noalias() = (Hl2.transpose() * Hl2).inverse();
 | |
|         H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2))));
 | |
|         gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2))));
 | |
| 
 | |
|         // Populate Gs and gs
 | |
|         int GsCount2 = 0;
 | |
|         for(size_t i1 = 0; i1 < numKeys; i1++) {
 | |
|           gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6);
 | |
| 
 | |
|           for(size_t i2 = 0; i2 < numKeys; i2++) {
 | |
|             if (i2 >= i1) {
 | |
|               Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
 | |
|               GsCount2++;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // ==========================================================================================================
 | |
|       if(linearizationThreshold >= 0){ // if we do not use selective relinearization we don't need to store these variables
 | |
|         state_->calculatedHessian = true;
 | |
|         state_->Gs = Gs;
 | |
|         state_->gs = gs;
 | |
|         state_->f = f;
 | |
|       }
 | |
| 
 | |
|       return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Calculate the error of the factor.
 | |
|      * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
 | |
|      * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
 | |
|      * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | |
|      */
 | |
|     virtual double error(const Values& values) const {
 | |
|       if (this->active(values)) {
 | |
|         double overallError=0;
 | |
| 
 | |
|         // Collect all poses (Cameras)
 | |
|         std::vector<Pose3> cameraPoses;
 | |
|         BOOST_FOREACH(const Key& k, keys_) {
 | |
|           Pose3 cameraPose;
 | |
|           if(body_P_sensor_)    {   cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
 | |
|           else                         { cameraPose = values.at<Pose3>(k);}
 | |
|           cameraPoses.push_back(cameraPose);
 | |
| 
 | |
|           if(0&& isDebug) {cameraPose.print("cameraPose = "); }
 | |
|         }
 | |
| 
 | |
|         if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
 | |
|           return 0.0;
 | |
|         }
 | |
| 
 | |
|         bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
 | |
| 
 | |
|         if(retriangulate) {// we store the current poses used for triangulation
 | |
|           state_->cameraPosesTriangulation = cameraPoses;
 | |
|         }
 | |
| 
 | |
|         if (retriangulate) {
 | |
|           // We triangulate the 3D position of the landmark
 | |
|           try {
 | |
|             state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance);
 | |
|             state_->degenerate = false;
 | |
|             state_->cheiralityException = false;
 | |
|           } catch( TriangulationUnderconstrainedException& e) {
 | |
|             // if TriangulationUnderconstrainedException can be
 | |
|             // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
 | |
|             // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
 | |
|             // in the second case we want to use a rotation-only smart factor
 | |
|             //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
 | |
|             state_->degenerate = true;
 | |
|             state_->cheiralityException = false;
 | |
|           } catch( TriangulationCheiralityException& e) {
 | |
|             // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
 | |
|             // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
 | |
|             //std::cout << e.what() << std::end;
 | |
|             state_->cheiralityException = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){
 | |
|           // if we don't want to manage the exceptions we discard the factor
 | |
|           // std::cout << "In error evaluation: exception" << std::endl;
 | |
|           return 0.0;
 | |
|         }
 | |
| 
 | |
|         if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
 | |
|           state_->degenerate = true;
 | |
|         }
 | |
| 
 | |
|         if(state_->degenerate){
 | |
|           for(size_t i = 0; i < measured_.size(); i++) {
 | |
|             Pose3 pose = cameraPoses.at(i);
 | |
|             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
 | |
|             if(i==0){ // first pose
 | |
|               state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
 | |
|             }
 | |
|             Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i));
 | |
|             overallError +=  0.5 * noise_.at(i)->distance( reprojectionError.vector() );
 | |
|             //overallError +=  reprojectionError.vector().norm();
 | |
|           }
 | |
|           return overallError;
 | |
|         }
 | |
|         else{
 | |
|           for(size_t i = 0; i < measured_.size(); i++) {
 | |
|             Pose3 pose = cameraPoses.at(i);
 | |
|             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
 | |
| 
 | |
|             try {
 | |
|               Point2 reprojectionError(camera.project(state_->point) - measured_.at(i));
 | |
|               //std::cout << "Reprojection error: " << reprojectionError << std::endl;
 | |
|               overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() );
 | |
|               //overallError += reprojectionError.vector().norm();
 | |
|             } catch ( CheiralityException& e) {
 | |
|               std::cout << "Cheirality exception " << state_->ID << std::endl;
 | |
|               exit(EXIT_FAILURE);
 | |
|             }
 | |
|           }
 | |
|           return overallError;
 | |
|         }
 | |
|       } else { // else of active flag
 | |
|         return 0.0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /** return the measurements */
 | |
|     const Vector& measured() const {
 | |
|       return measured_;
 | |
|     }
 | |
| 
 | |
|     /** return the noise model */
 | |
|     const SharedNoiseModel& noise() const {
 | |
|       return noise_; 
 | |
|     }
 | |
| 
 | |
|     /** return the landmark */
 | |
|     boost::optional<Point3> point() const {
 | |
|       return state_->point;
 | |
|     }
 | |
| 
 | |
|     /** return the calibration object */
 | |
|     inline const boost::shared_ptr<CALIBRATION> calibration() const {
 | |
|       return K_all_;
 | |
|     }
 | |
| 
 | |
|     /** return verbosity */
 | |
|     inline bool verboseCheirality() const { return verboseCheirality_; }
 | |
| 
 | |
|     /** return flag for throwing cheirality exceptions */
 | |
|     inline bool throwCheirality() const { return throwCheirality_; }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     /// Serialization function
 | |
|     friend class boost::serialization::access;
 | |
|     template<class ARCHIVE>
 | |
|     void serialize(ARCHIVE & ar, const unsigned int version) {
 | |
|       ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
 | |
|       ar & BOOST_SERIALIZATION_NVP(measured_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(K_all_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
 | |
|     }
 | |
| 
 | |
|   };
 | |
| 
 | |
| } // \ namespace gtsam
 |