gtsam/gtsam_unstable/examples/ExpressionExample.cpp

102 lines
3.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ExpressionExample.cpp
* @brief A structure-from-motion example done with Expressions
* @author Frank Dellaert
* @author Duy-Nguyen Ta
* @date October 1, 2014
*/
/**
* This is the Expression version of SFMExample
* See detailed description of headers there, this focuses on explaining the AD part
*/
// The two new headers that allow using our Automatic Differentiation Expression framework
#include <gtsam_unstable/slam/expressions.h>
#include <gtsam_unstable/nonlinear/BADFactor.h>
// Header order is close to far
#include <examples/SFMdata.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/DoglegOptimizer.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks and poses
vector<Point3> points = createPoints();
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// Specify uncertainty on first pose prior
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
// Here we don't use a PriorFactor but directly the BADFactor class
// The object x0 is an Expression, and we create a factor wanting it to be equal to poses[0]
Pose3_ x0('x',0);
graph.push_back(BADFactor<Pose3>(poseNoise, poses[0], x0));
// We create a constant Expression for the calibration here
Cal3_S2_ cK(K);
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t i = 0; i < poses.size(); ++i) {
for (size_t j = 0; j < points.size(); ++j) {
SimpleCamera camera(poses[i], K);
Point2 measurement = camera.project(points[j]);
// Below an expression for the prediction of the measurement:
Pose3_ x('x', i);
Point3_ p('l', j);
Expression<Point2> prediction = uncalibrate(cK, project(transform_to(x, p)));
// Again, here we use a BADFactor
graph.push_back(BADFactor<Point2>(measurementNoise, measurement, prediction));
}
}
// Add prior on first point to constrain scale, again with BADFActor
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
graph.push_back(BADFactor<Point3>(pointNoise, points[0], Point3_('l', 0)));
// Create perturbed initial
Values initialEstimate;
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
for (size_t j = 0; j < points.size(); ++j)
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
cout << "initial error = " << graph.error(initialEstimate) << endl;
/* Optimize the graph and print results */
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
cout << "final error = " << graph.error(result) << endl;
return 0;
}
/* ************************************************************************* */