570 lines
18 KiB
C++
570 lines
18 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file PinholeCamera.h
|
|
* @brief Base class for all pinhole cameras
|
|
* @author Yong-Dian Jian
|
|
* @date Jan 27, 2012
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <boost/optional.hpp>
|
|
#include <boost/serialization/nvp.hpp>
|
|
#include <gtsam/base/DerivedValue.h>
|
|
#include <gtsam/base/Vector.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/CalibratedCamera.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* A pinhole camera class that has a Pose3 and a Calibration.
|
|
* @addtogroup geometry
|
|
* \nosubgrouping
|
|
*/
|
|
template<typename Calibration>
|
|
class PinholeCamera: public DerivedValue<PinholeCamera<Calibration> > {
|
|
private:
|
|
Pose3 pose_;
|
|
Calibration K_;
|
|
|
|
public:
|
|
|
|
/// @name Standard Constructors
|
|
/// @{
|
|
|
|
/** default constructor */
|
|
PinholeCamera() {
|
|
}
|
|
|
|
/** constructor with pose */
|
|
explicit PinholeCamera(const Pose3& pose) :
|
|
pose_(pose) {
|
|
}
|
|
|
|
/** constructor with pose and calibration */
|
|
PinholeCamera(const Pose3& pose, const Calibration& K) :
|
|
pose_(pose), K_(K) {
|
|
}
|
|
|
|
/// @}
|
|
/// @name Named Constructors
|
|
/// @{
|
|
|
|
/**
|
|
* Create a level camera at the given 2D pose and height
|
|
* @param K the calibration
|
|
* @param pose2 specifies the location and viewing direction
|
|
* (theta 0 = looking in direction of positive X axis)
|
|
* @param height camera height
|
|
*/
|
|
static PinholeCamera Level(const Calibration &K, const Pose2& pose2,
|
|
double height) {
|
|
const double st = sin(pose2.theta()), ct = cos(pose2.theta());
|
|
const Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0);
|
|
const Rot3 wRc(x, y, z);
|
|
const Point3 t(pose2.x(), pose2.y(), height);
|
|
const Pose3 pose3(wRc, t);
|
|
return PinholeCamera(pose3, K);
|
|
}
|
|
|
|
/// PinholeCamera::level with default calibration
|
|
static PinholeCamera Level(const Pose2& pose2, double height) {
|
|
return PinholeCamera::Level(Calibration(), pose2, height);
|
|
}
|
|
|
|
/**
|
|
* Create a camera at the given eye position looking at a target point in the scene
|
|
* with the specified up direction vector.
|
|
* @param eye specifies the camera position
|
|
* @param target the point to look at
|
|
* @param upVector specifies the camera up direction vector,
|
|
* doesn't need to be on the image plane nor orthogonal to the viewing axis
|
|
* @param K optional calibration parameter
|
|
*/
|
|
static PinholeCamera Lookat(const Point3& eye, const Point3& target,
|
|
const Point3& upVector, const Calibration& K = Calibration()) {
|
|
Point3 zc = target - eye;
|
|
zc = zc / zc.norm();
|
|
Point3 xc = (-upVector).cross(zc); // minus upVector since yc is pointing down
|
|
xc = xc / xc.norm();
|
|
Point3 yc = zc.cross(xc);
|
|
Pose3 pose3(Rot3(xc, yc, zc), eye);
|
|
return PinholeCamera(pose3, K);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Advanced Constructors
|
|
/// @{
|
|
|
|
explicit PinholeCamera(const Vector &v) {
|
|
pose_ = Pose3::Expmap(v.head(Pose3::Dim()));
|
|
if (v.size() > Pose3::Dim()) {
|
|
K_ = Calibration(v.tail(Calibration::Dim()));
|
|
}
|
|
}
|
|
|
|
PinholeCamera(const Vector &v, const Vector &K) :
|
|
pose_(Pose3::Expmap(v)), K_(K) {
|
|
}
|
|
|
|
/// @}
|
|
/// @name Testable
|
|
/// @{
|
|
|
|
/// assert equality up to a tolerance
|
|
bool equals(const PinholeCamera &camera, double tol = 1e-9) const {
|
|
return pose_.equals(camera.pose(), tol)
|
|
&& K_.equals(camera.calibration(), tol);
|
|
}
|
|
|
|
/// print
|
|
void print(const std::string& s = "PinholeCamera") const {
|
|
pose_.print(s + ".pose");
|
|
K_.print(s + ".calibration");
|
|
}
|
|
|
|
/// @}
|
|
/// @name Standard Interface
|
|
/// @{
|
|
|
|
virtual ~PinholeCamera() {
|
|
}
|
|
|
|
/// return pose
|
|
inline Pose3& pose() {
|
|
return pose_;
|
|
}
|
|
|
|
/// return pose
|
|
inline const Pose3& pose() const {
|
|
return pose_;
|
|
}
|
|
|
|
/// return calibration
|
|
inline Calibration& calibration() {
|
|
return K_;
|
|
}
|
|
|
|
/// return calibration
|
|
inline const Calibration& calibration() const {
|
|
return K_;
|
|
}
|
|
|
|
/// @}
|
|
/// @name Group ?? Frank says this might not make sense
|
|
/// @{
|
|
|
|
/// compose two cameras: TODO Frank says this might not make sense
|
|
inline const PinholeCamera compose(const PinholeCamera &c,
|
|
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
|
|
boost::none) const {
|
|
PinholeCamera result(pose_.compose(c.pose(), H1, H2), K_);
|
|
if (H1) {
|
|
H1->conservativeResize(Dim(), Dim());
|
|
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
|
|
Calibration::Dim());
|
|
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
|
|
}
|
|
if (H2) {
|
|
H2->conservativeResize(Dim(), Dim());
|
|
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
|
|
Calibration::Dim());
|
|
H2->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// between two cameras: TODO Frank says this might not make sense
|
|
inline const PinholeCamera between(const PinholeCamera& c,
|
|
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
|
|
boost::none) const {
|
|
PinholeCamera result(pose_.between(c.pose(), H1, H2), K_);
|
|
if (H1) {
|
|
H1->conservativeResize(Dim(), Dim());
|
|
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
|
|
Calibration::Dim());
|
|
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
|
|
}
|
|
if (H2) {
|
|
H2->conservativeResize(Dim(), Dim());
|
|
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
|
|
Calibration::Dim());
|
|
H2->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// inverse camera: TODO Frank says this might not make sense
|
|
inline const PinholeCamera inverse(
|
|
boost::optional<Matrix&> H1 = boost::none) const {
|
|
PinholeCamera result(pose_.inverse(H1), K_);
|
|
if (H1) {
|
|
H1->conservativeResize(Dim(), Dim());
|
|
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
|
|
Calibration::Dim());
|
|
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// compose two cameras: TODO Frank says this might not make sense
|
|
inline const PinholeCamera compose(const Pose3 &c) const {
|
|
return PinholeCamera(pose_.compose(c), K_);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Manifold
|
|
/// @{
|
|
|
|
/// move a cameras according to d
|
|
PinholeCamera retract(const Vector& d) const {
|
|
if ((size_t) d.size() == pose_.dim())
|
|
return PinholeCamera(pose().retract(d), calibration());
|
|
else
|
|
return PinholeCamera(pose().retract(d.head(pose().dim())),
|
|
calibration().retract(d.tail(calibration().dim())));
|
|
}
|
|
|
|
/// return canonical coordinate
|
|
Vector localCoordinates(const PinholeCamera& T2) const {
|
|
Vector d(dim());
|
|
d.head(pose().dim()) = pose().localCoordinates(T2.pose());
|
|
d.tail(calibration().dim()) = calibration().localCoordinates(
|
|
T2.calibration());
|
|
return d;
|
|
}
|
|
|
|
/// Manifold dimension
|
|
inline size_t dim() const {
|
|
return pose_.dim() + K_.dim();
|
|
}
|
|
|
|
/// Manifold dimension
|
|
inline static size_t Dim() {
|
|
return Pose3::Dim() + Calibration::Dim();
|
|
}
|
|
|
|
/// @}
|
|
/// @name Transformations and measurement functions
|
|
/// @{
|
|
|
|
/**
|
|
* projects a 3-dimensional point in camera coordinates into the
|
|
* camera and returns a 2-dimensional point, no calibration applied
|
|
* @param P A point in camera coordinates
|
|
* @param Dpoint is the 2*3 Jacobian w.r.t. P
|
|
*/
|
|
inline static Point2 project_to_camera(const Point3& P,
|
|
boost::optional<Matrix&> Dpoint = boost::none) {
|
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
|
if (P.z() <= 0)
|
|
throw CheiralityException();
|
|
#endif
|
|
double d = 1.0 / P.z();
|
|
const double u = P.x() * d, v = P.y() * d;
|
|
if (Dpoint) {
|
|
*Dpoint = (Matrix(2, 3) << d, 0.0, -u * d, 0.0, d, -v * d);
|
|
}
|
|
return Point2(u, v);
|
|
}
|
|
|
|
/// Project a point into the image and check depth
|
|
inline std::pair<Point2, bool> projectSafe(const Point3& pw) const {
|
|
const Point3 pc = pose_.transform_to(pw);
|
|
const Point2 pn = project_to_camera(pc);
|
|
return std::make_pair(K_.uncalibrate(pn), pc.z() > 0);
|
|
}
|
|
|
|
/** project a point from world coordinate to the image
|
|
* @param pw is a point in world coordinates
|
|
* @param Dpose is the Jacobian w.r.t. pose3
|
|
* @param Dpoint is the Jacobian w.r.t. point3
|
|
* @param Dcal is the Jacobian w.r.t. calibration
|
|
*/
|
|
inline Point2 project(
|
|
const Point3& pw, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dpoint = boost::none,
|
|
boost::optional<Matrix&> Dcal = boost::none) const {
|
|
|
|
// Transform to camera coordinates and check cheirality
|
|
const Point3 pc = pose_.transform_to(pw);
|
|
|
|
// Project to normalized image coordinates
|
|
const Point2 pn = project_to_camera(pc);
|
|
|
|
if (Dpose || Dpoint) {
|
|
const double z = pc.z(), d = 1.0 / z;
|
|
|
|
// uncalibration
|
|
Matrix Dpi_pn(2, 2);
|
|
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
|
|
|
|
// chain the Jacobian matrices
|
|
if (Dpose) {
|
|
Dpose->resize(2, 6);
|
|
calculateDpose(pn, d, Dpi_pn, *Dpose);
|
|
}
|
|
if (Dpoint) {
|
|
Dpoint->resize(2, 3);
|
|
calculateDpoint(pn, d, pose_.rotation().matrix(), Dpi_pn, *Dpoint);
|
|
}
|
|
return pi;
|
|
} else
|
|
return K_.uncalibrate(pn, Dcal);
|
|
}
|
|
|
|
/** project a point at infinity from world coordinate to the image
|
|
* @param pw is a point in the world coordinate (it is pw = lambda*[pw_x pw_y pw_z] with lambda->inf)
|
|
* @param Dpose is the Jacobian w.r.t. pose3
|
|
* @param Dpoint is the Jacobian w.r.t. point3
|
|
* @param Dcal is the Jacobian w.r.t. calibration
|
|
*/
|
|
inline Point2 projectPointAtInfinity(
|
|
const Point3& pw, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dpoint = boost::none,
|
|
boost::optional<Matrix&> Dcal = boost::none) const {
|
|
|
|
if (!Dpose && !Dpoint && !Dcal) {
|
|
const Point3 pc = pose_.rotation().unrotate(pw); // get direction in camera frame (translation does not matter)
|
|
const Point2 pn = project_to_camera(pc); // project the point to the camera
|
|
return K_.uncalibrate(pn);
|
|
}
|
|
|
|
// world to camera coordinate
|
|
Matrix Dpc_rot /* 3*3 */, Dpc_point /* 3*3 */;
|
|
const Point3 pc = pose_.rotation().unrotate(pw, Dpc_rot, Dpc_point);
|
|
|
|
Matrix Dpc_pose = Matrix::Zero(3, 6);
|
|
Dpc_pose.block(0, 0, 3, 3) = Dpc_rot;
|
|
|
|
// camera to normalized image coordinate
|
|
Matrix Dpn_pc; // 2*3
|
|
const Point2 pn = project_to_camera(pc, Dpn_pc);
|
|
|
|
// uncalibration
|
|
Matrix Dpi_pn; // 2*2
|
|
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
|
|
|
|
// chain the Jacobian matrices
|
|
const Matrix Dpi_pc = Dpi_pn * Dpn_pc;
|
|
if (Dpose)
|
|
*Dpose = Dpi_pc * Dpc_pose;
|
|
if (Dpoint)
|
|
*Dpoint = (Dpi_pc * Dpc_point).block(0, 0, 2, 2); // only 2dof are important for the point (direction-only)
|
|
return pi;
|
|
}
|
|
|
|
/** project a point from world coordinate to the image
|
|
* @param pw is a point in the world coordinate
|
|
* @param Dcamera is the Jacobian w.r.t. [pose3 calibration]
|
|
* @param Dpoint is the Jacobian w.r.t. point3
|
|
*/
|
|
inline Point2 project2(
|
|
const Point3& pw, //
|
|
boost::optional<Matrix&> Dcamera = boost::none,
|
|
boost::optional<Matrix&> Dpoint = boost::none) const {
|
|
|
|
const Point3 pc = pose_.transform_to(pw);
|
|
const Point2 pn = project_to_camera(pc);
|
|
|
|
if (!Dcamera && !Dpoint) {
|
|
return K_.uncalibrate(pn);
|
|
} else {
|
|
const double z = pc.z(), d = 1.0 / z;
|
|
|
|
// uncalibration
|
|
Matrix Dcal, Dpi_pn(2, 2);
|
|
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
|
|
|
|
if (Dcamera) {
|
|
Dcamera->resize(2, this->dim());
|
|
calculateDpose(pn, d, Dpi_pn, Dcamera->leftCols<6>());
|
|
Dcamera->rightCols(K_.dim()) = Dcal; // Jacobian wrt calib
|
|
}
|
|
if (Dpoint) {
|
|
Dpoint->resize(2, 3);
|
|
calculateDpoint(pn, d, pose_.rotation().matrix(), Dpi_pn, *Dpoint);
|
|
}
|
|
return pi;
|
|
}
|
|
}
|
|
|
|
/// backproject a 2-dimensional point to a 3-dimensional point at given depth
|
|
inline Point3 backproject(const Point2& p, double depth) const {
|
|
const Point2 pn = K_.calibrate(p);
|
|
const Point3 pc(pn.x() * depth, pn.y() * depth, depth);
|
|
return pose_.transform_from(pc);
|
|
}
|
|
|
|
/// backproject a 2-dimensional point to a 3-dimensional point at infinity
|
|
inline Point3 backprojectPointAtInfinity(const Point2& p) const {
|
|
const Point2 pn = K_.calibrate(p);
|
|
const Point3 pc(pn.x(), pn.y(), 1.0); //by convention the last element is 1
|
|
return pose_.rotation().rotate(pc);
|
|
}
|
|
|
|
/**
|
|
* Calculate range to a landmark
|
|
* @param point 3D location of landmark
|
|
* @param Dpose the optionally computed Jacobian with respect to pose
|
|
* @param Dpoint the optionally computed Jacobian with respect to the landmark
|
|
* @return range (double)
|
|
*/
|
|
double range(
|
|
const Point3& point, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dpoint = boost::none) const {
|
|
double result = pose_.range(point, Dpose, Dpoint);
|
|
if (Dpose) {
|
|
// Add columns of zeros to Jacobian for calibration
|
|
Matrix& H1r(*Dpose);
|
|
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
|
|
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Calculate range to another pose
|
|
* @param pose Other SO(3) pose
|
|
* @param Dpose the optionally computed Jacobian with respect to pose
|
|
* @param Dpose2 the optionally computed Jacobian with respect to the other pose
|
|
* @return range (double)
|
|
*/
|
|
double range(
|
|
const Pose3& pose, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dpose2 = boost::none) const {
|
|
double result = pose_.range(pose, Dpose, Dpose2);
|
|
if (Dpose) {
|
|
// Add columns of zeros to Jacobian for calibration
|
|
Matrix& H1r(*Dpose);
|
|
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
|
|
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Calculate range to another camera
|
|
* @param camera Other camera
|
|
* @param Dpose the optionally computed Jacobian with respect to pose
|
|
* @param Dother the optionally computed Jacobian with respect to the other camera
|
|
* @return range (double)
|
|
*/
|
|
template<class CalibrationB>
|
|
double range(
|
|
const PinholeCamera<CalibrationB>& camera, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dother = boost::none) const {
|
|
double result = pose_.range(camera.pose_, Dpose, Dother);
|
|
if (Dpose) {
|
|
// Add columns of zeros to Jacobian for calibration
|
|
Matrix& H1r(*Dpose);
|
|
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
|
|
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
|
|
}
|
|
if (Dother) {
|
|
// Add columns of zeros to Jacobian for calibration
|
|
Matrix& H2r(*Dother);
|
|
H2r.conservativeResize(Eigen::NoChange,
|
|
camera.pose().dim() + camera.calibration().dim());
|
|
H2r.block(0, camera.pose().dim(), 1, camera.calibration().dim()) =
|
|
Matrix::Zero(1, camera.calibration().dim());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Calculate range to another camera
|
|
* @param camera Other camera
|
|
* @param Dpose the optionally computed Jacobian with respect to pose
|
|
* @param Dother the optionally computed Jacobian with respect to the other camera
|
|
* @return range (double)
|
|
*/
|
|
double range(
|
|
const CalibratedCamera& camera, //
|
|
boost::optional<Matrix&> Dpose = boost::none,
|
|
boost::optional<Matrix&> Dother = boost::none) const {
|
|
return pose_.range(camera.pose_, Dpose, Dother);
|
|
}
|
|
|
|
private:
|
|
|
|
/**
|
|
* Calculate Jacobian with respect to pose
|
|
* @param pn projection in normalized coordinates
|
|
* @param d disparity (inverse depth)
|
|
* @param Dpi_pn derivative of uncalibrate with respect to pn
|
|
* @param Dpose Output argument, can be matrix or block, assumed right size !
|
|
* See http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
|
|
*/
|
|
template<typename Derived>
|
|
static void calculateDpose(const Point2& pn, double d, const Matrix& Dpi_pn,
|
|
Eigen::MatrixBase<Derived> const & Dpose) {
|
|
// optimized version of derivatives, see CalibratedCamera.nb
|
|
const double u = pn.x(), v = pn.y();
|
|
double uv = u * v, uu = u * u, vv = v * v;
|
|
Eigen::Matrix<double, 2, 6> Dpn_pose;
|
|
Dpn_pose << uv, -1 - uu, v, -d, 0, d * u, 1 + vv, -uv, -u, 0, -d, d * v;
|
|
assert(Dpose.rows()==2 && Dpose.cols()==6);
|
|
const_cast<Eigen::MatrixBase<Derived>&>(Dpose) = //
|
|
Dpi_pn.block<2, 2>(0, 0) * Dpn_pose;
|
|
}
|
|
|
|
/**
|
|
* Calculate Jacobian with respect to point
|
|
* @param pn projection in normalized coordinates
|
|
* @param d disparity (inverse depth)
|
|
* @param Dpi_pn derivative of uncalibrate with respect to pn
|
|
* @param Dpoint Output argument, can be matrix or block, assumed right size !
|
|
* See http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
|
|
*/
|
|
template<typename Derived>
|
|
static void calculateDpoint(const Point2& pn, double d, const Matrix& R,
|
|
const Matrix& Dpi_pn, Eigen::MatrixBase<Derived> const & Dpoint) {
|
|
// optimized version of derivatives, see CalibratedCamera.nb
|
|
const double u = pn.x(), v = pn.y();
|
|
Eigen::Matrix<double, 2, 3> Dpn_point;
|
|
Dpn_point << //
|
|
R(0, 0) - u * R(0, 2), R(1, 0) - u * R(1, 2), R(2, 0) - u * R(2, 2), //
|
|
/**/R(0, 1) - v * R(0, 2), R(1, 1) - v * R(1, 2), R(2, 1) - v * R(2, 2);
|
|
Dpn_point *= d;
|
|
assert(Dpoint.rows()==2 && Dpoint.cols()==3);
|
|
const_cast<Eigen::MatrixBase<Derived>&>(Dpoint) = //
|
|
Dpi_pn.block<2, 2>(0, 0) * Dpn_point;
|
|
}
|
|
|
|
/// @}
|
|
/// @name Advanced Interface
|
|
/// @{
|
|
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Value);
|
|
ar & BOOST_SERIALIZATION_NVP(pose_);
|
|
ar & BOOST_SERIALIZATION_NVP(K_);
|
|
}
|
|
/// @}
|
|
}
|
|
;}
|