gtsam/gtsam/nonlinear/LevenbergMarquardtOptimizer...

168 lines
6.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LevenbergMarquardtOptimizer.cpp
* @brief
* @author Richard Roberts
* @date Feb 26, 2012
*/
#include <cmath>
#include <gtsam/linear/linearExceptions.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/SuccessiveLinearizationOptimizer.h>
#include <boost/algorithm/string.hpp>
#include <string>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
LevenbergMarquardtParams::VerbosityLM LevenbergMarquardtParams::verbosityLMTranslator(const std::string &src) const {
std::string s = src; boost::algorithm::to_upper(s);
if (s == "SILENT") return LevenbergMarquardtParams::SILENT;
if (s == "LAMBDA") return LevenbergMarquardtParams::LAMBDA;
if (s == "TRYLAMBDA") return LevenbergMarquardtParams::TRYLAMBDA;
if (s == "TRYCONFIG") return LevenbergMarquardtParams::TRYCONFIG;
if (s == "TRYDELTA") return LevenbergMarquardtParams::TRYDELTA;
if (s == "DAMPED") return LevenbergMarquardtParams::DAMPED;
/* default is silent */
return LevenbergMarquardtParams::SILENT;
}
/* ************************************************************************* */
std::string LevenbergMarquardtParams::verbosityLMTranslator(VerbosityLM value) const {
std::string s;
switch (value) {
case LevenbergMarquardtParams::SILENT: s = "SILENT" ; break;
case LevenbergMarquardtParams::LAMBDA: s = "LAMBDA" ; break;
case LevenbergMarquardtParams::TRYLAMBDA: s = "TRYLAMBDA" ; break;
case LevenbergMarquardtParams::TRYCONFIG: s = "TRYCONFIG" ; break;
case LevenbergMarquardtParams::TRYDELTA: s = "TRYDELTA" ; break;
case LevenbergMarquardtParams::DAMPED: s = "DAMPED" ; break;
default: s = "UNDEFINED" ; break;
}
return s;
}
/* ************************************************************************* */
void LevenbergMarquardtParams::print(const std::string& str) const {
SuccessiveLinearizationParams::print(str);
std::cout << " lambdaInitial: " << lambdaInitial << "\n";
std::cout << " lambdaFactor: " << lambdaFactor << "\n";
std::cout << " lambdaUpperBound: " << lambdaUpperBound << "\n";
std::cout << " verbosityLM: " << verbosityLMTranslator(verbosityLM) << "\n";
std::cout.flush();
}
/* ************************************************************************* */
void LevenbergMarquardtOptimizer::iterate() {
gttic(LM_iterate);
// Linearize graph
GaussianFactorGraph::shared_ptr linear = graph_.linearize(state_.values, *params_.ordering);
// Pull out parameters we'll use
const NonlinearOptimizerParams::Verbosity nloVerbosity = params_.verbosity;
const LevenbergMarquardtParams::VerbosityLM lmVerbosity = params_.verbosityLM;
// Keep increasing lambda until we make make progress
while(true) {
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA)
cout << "trying lambda = " << state_.lambda << endl;
// Add prior-factors
// TODO: replace this dampening with a backsubstitution approach
gttic(damp);
GaussianFactorGraph dampedSystem(*linear);
{
double sigma = 1.0 / std::sqrt(state_.lambda);
dampedSystem.reserve(dampedSystem.size() + dimensions_.size());
// for each of the variables, add a prior
for(Index j=0; j<dimensions_.size(); ++j) {
size_t dim = (dimensions_)[j];
Matrix A = eye(dim);
Vector b = zero(dim);
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim,sigma);
GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
dampedSystem.push_back(prior);
}
}
gttoc(damp);
if (lmVerbosity >= LevenbergMarquardtParams::DAMPED) dampedSystem.print("damped");
// Try solving
try {
// Solve Damped Gaussian Factor Graph
const VectorValues delta = solveGaussianFactorGraph(dampedSystem, params_);
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA) cout << "linear delta norm = " << delta.vector().norm() << endl;
if (lmVerbosity >= LevenbergMarquardtParams::TRYDELTA) delta.print("delta");
// update values
gttic(retract);
Values newValues = state_.values.retract(delta, *params_.ordering);
gttoc(retract);
// create new optimization state with more adventurous lambda
gttic(compute_error);
double error = graph_.error(newValues);
gttoc(compute_error);
if (lmVerbosity >= LevenbergMarquardtParams::TRYLAMBDA) cout << "next error = " << error << endl;
if(error <= state_.error) {
state_.values.swap(newValues);
state_.error = error;
state_.lambda /= params_.lambdaFactor;
break;
} else {
// Either we're not cautious, or the same lambda was worse than the current error.
// The more adventurous lambda was worse too, so make lambda more conservative
// and keep the same values.
if(state_.lambda >= params_.lambdaUpperBound) {
if(nloVerbosity >= NonlinearOptimizerParams::ERROR)
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
break;
} else {
state_.lambda *= params_.lambdaFactor;
}
}
} catch(const IndeterminantLinearSystemException& e) {
if(lmVerbosity >= LevenbergMarquardtParams::LAMBDA)
cout << "Negative matrix, increasing lambda" << endl;
// Either we're not cautious, or the same lambda was worse than the current error.
// The more adventurous lambda was worse too, so make lambda more conservative
// and keep the same values.
if(state_.lambda >= params_.lambdaUpperBound) {
if(nloVerbosity >= NonlinearOptimizerParams::ERROR)
cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << endl;
break;
} else {
state_.lambda *= params_.lambdaFactor;
}
} catch(...) {
throw;
}
} // end while
// Increment the iteration counter
++state_.iterations;
}
} /* namespace gtsam */