401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  TestSmartProjectionFactor.cpp
 | |
|  *  @brief Unit tests for ProjectionFactor Class
 | |
|  *  @author Frank Dellaert
 | |
|  *  @date Nov 2009
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <iostream>
 | |
| 
 | |
| TEST(SmartProjectionFactor, disabled)
 | |
| {
 | |
|   CHECK(("*** testSmartProjectionFactor is disabled *** - Needs conversion for unordered", 0));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam_unstable/slam/SmartProjectionFactor.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/LinearContainerFactor.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/inference/JunctionTree.h>
 | |
| #include <gtsam_unstable/geometry/triangulation.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/Point3.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Cal3DS2.h>
 | |
| #include <gtsam/geometry/Cal3_S2.h>
 | |
| #include <gtsam/geometry/SimpleCamera.h>
 | |
| 
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace boost::assign;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // make a realistic calibration matrix
 | |
| static double fov = 60; // degrees
 | |
| static size_t w=640,h=480;
 | |
| static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
 | |
| 
 | |
| // Create a noise model for the pixel error
 | |
| static SharedNoiseModel model(noiseModel::Unit::Create(2));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| typedef SmartProjectionFactor<Pose3, Point3> TestSmartProjectionFactor;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, Constructor) {
 | |
|   Key poseKey(X(1));
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += poseKey;
 | |
| 
 | |
|   std::vector<Point2> measurements;
 | |
|   measurements.push_back(Point2(323.0, 240.0));
 | |
| 
 | |
|   TestSmartProjectionFactor factor(measurements, model, views, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, ConstructorWithTransform) {
 | |
|   Key poseKey(X(1));
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += poseKey;
 | |
| 
 | |
|   std::vector<Point2> measurements;
 | |
|   measurements.push_back(Point2(323.0, 240.0));
 | |
|   Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | |
| 
 | |
|   TestSmartProjectionFactor factor(measurements, model, views, K, body_P_sensor);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, Equals ) {
 | |
|   // Create two identical factors and make sure they're equal
 | |
|   std::vector<Point2> measurements;
 | |
|   measurements.push_back(Point2(323.0, 240.0));
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += X(1);
 | |
|   TestSmartProjectionFactor factor1(measurements, model, views, K);
 | |
|   TestSmartProjectionFactor factor2(measurements, model, views, K);
 | |
| 
 | |
|   CHECK(assert_equal(factor1, factor2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, EqualsWithTransform ) {
 | |
|   // Create two identical factors and make sure they're equal
 | |
|   std::vector<Point2> measurements;
 | |
|   measurements.push_back(Point2(323.0, 240.0));
 | |
|   Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += X(1);
 | |
|   TestSmartProjectionFactor factor1(measurements, model, views, K, body_P_sensor);
 | |
|   TestSmartProjectionFactor factor2(measurements, model, views, K, body_P_sensor);
 | |
| 
 | |
|   CHECK(assert_equal(factor1, factor2));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, noisy ){
 | |
|   cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
 | |
| 
 | |
|   Symbol x1('X',  1);
 | |
|   Symbol x2('X',  2);
 | |
| 
 | |
|   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += x1, x2; //, x3;
 | |
| 
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera level_camera(level_pose, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera level_camera_right(level_pose_right, *K);
 | |
| 
 | |
|   // landmark ~5 meters infront of camera
 | |
|   Point3 landmark(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project two landmarks into two cameras and triangulate
 | |
|   Point2 pixelError(0.2,0.2);
 | |
|   Point2 level_uv = level_camera.project(landmark) + pixelError;
 | |
|   Point2 level_uv_right = level_camera_right.project(landmark);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   values.insert(x2, level_pose_right.compose(noise_pose));
 | |
| 
 | |
|   vector<Point2> measurements;
 | |
|   measurements += level_uv, level_uv_right;
 | |
| 
 | |
|   SmartProjectionFactor<Pose3, Point3, Cal3_S2>::shared_ptr
 | |
|     smartFactor(new SmartProjectionFactor<Pose3, Point3, Cal3_S2>(measurements, noiseProjection, views, K));
 | |
| 
 | |
|   double actualError = smartFactor->error(values);
 | |
|   std::cout << "Error: " << actualError << std::endl;
 | |
| 
 | |
|   // we do not expect to be able to predict the error, since the error on the pixel will change
 | |
|   // the triangulation of the landmark which is internal to the factor.
 | |
|   // DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, 3poses ){
 | |
|   cout << " ************************ MultiProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
 | |
| 
 | |
|   Symbol x1('X',  1);
 | |
|   Symbol x2('X',  2);
 | |
|   Symbol x3('X',  3);
 | |
| 
 | |
|   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += x1, x2, x3;
 | |
| 
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   Point2 cam1_uv1 = cam1.project(landmark1);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark1);
 | |
|   Point2 cam3_uv1 = cam3.project(landmark1);
 | |
|   measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1;
 | |
| 
 | |
|   //
 | |
|   Point2 cam1_uv2 = cam1.project(landmark2);
 | |
|   Point2 cam2_uv2 = cam2.project(landmark2);
 | |
|   Point2 cam3_uv2 = cam3.project(landmark2);
 | |
|   measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2;
 | |
| 
 | |
| 
 | |
|   Point2 cam1_uv3 = cam1.project(landmark3);
 | |
|   Point2 cam2_uv3 = cam2.project(landmark3);
 | |
|   Point2 cam3_uv3 = cam3.project(landmark3);
 | |
|   measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3;
 | |
| 
 | |
|   typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K));
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K));
 | |
|   SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K));
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2*noise_pose);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   tictoc_print_();
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, 3poses_projection_factor ){
 | |
|   cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
 | |
| 
 | |
|   Symbol x1('X',  1);
 | |
|   Symbol x2('X',  2);
 | |
|   Symbol x3('X',  3);
 | |
| 
 | |
|   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += x1, x2, x3;
 | |
| 
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   pose3.print("Pose3: ");
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   graph.add(ProjectionFactor(cam1.project(landmark1), noiseProjection, x1, L(1), K));
 | |
|   graph.add(ProjectionFactor(cam2.project(landmark1), noiseProjection, x2, L(1), K));
 | |
|   graph.add(ProjectionFactor(cam3.project(landmark1), noiseProjection, x3, L(1), K));
 | |
| 
 | |
|   //
 | |
|   graph.add(ProjectionFactor(cam1.project(landmark2), noiseProjection, x1, L(2), K));
 | |
|   graph.add(ProjectionFactor(cam2.project(landmark2), noiseProjection, x2, L(2), K));
 | |
|   graph.add(ProjectionFactor(cam3.project(landmark2), noiseProjection, x3, L(2), K));
 | |
| 
 | |
|   graph.add(ProjectionFactor(cam1.project(landmark3), noiseProjection, x1, L(3), K));
 | |
|   graph.add(ProjectionFactor(cam2.project(landmark3), noiseProjection, x2, L(3), K));
 | |
|   graph.add(ProjectionFactor(cam3.project(landmark3), noiseProjection, x3, L(3), K));
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
|   graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.add(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3* noise_pose);
 | |
|   values.insert(L(1), landmark1);
 | |
|   values.insert(L(2), landmark2);
 | |
|   values.insert(L(3), landmark3);
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
| //  params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
| //  params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   Values result = optimizer.optimize();
 | |
| 
 | |
|   result.print("Regular Projection Factor: results of 3 camera, 3 landmark optimization \n");
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionFactor, Hessian ){
 | |
|   cout << " ************************ Normal ProjectionFactor: Hessian **********************" << endl;
 | |
| 
 | |
|   Symbol x1('X',  1);
 | |
|   Symbol x2('X',  2);
 | |
| 
 | |
|   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views += x1, x2;
 | |
| 
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   Point2 cam1_uv1 = cam1.project(landmark1);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark1);
 | |
|   vector<Point2> measurements_cam1;
 | |
|   measurements_cam1 += cam1_uv1, cam2_uv1;
 | |
| 
 | |
|   SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements_cam1, noiseProjection, views, K);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   //  values.insert(L(1), landmark1);
 | |
| 
 | |
|   Ordering ordering;
 | |
|   ordering.push_back(x1);
 | |
|   ordering.push_back(x2);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor.linearize(values, ordering);
 | |
|   hessianFactor->print("Hessian factor \n");
 | |
| 
 | |
|   // compute triangulation from linearization point
 | |
|   // compute reprojection errors (sum squared)
 | |
|   // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
 | |
|   // check that it is correctly scaled when using noiseProjection = [1/4  0; 0 1/4]
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 | |
| 
 |