gtsam/gtsam/geometry/Similarity2.cpp

285 lines
8.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Similarity2.cpp
* @brief Implementation of Similarity2 transform
* @author John Lambert, Varun Agrawal
*/
#include <gtsam/base/Manifold.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Similarity2.h>
#include <gtsam/slam/KarcherMeanFactor-inl.h>
namespace gtsam {
using std::vector;
namespace internal {
/// Subtract centroids from point pairs.
static Point2Pairs SubtractCentroids(const Point2Pairs& abPointPairs,
const Point2Pair& centroids) {
Point2Pairs d_abPointPairs;
for (const auto& [a, b] : abPointPairs) {
Point2 da = a - centroids.first;
Point2 db = b - centroids.second;
d_abPointPairs.emplace_back(da, db);
}
return d_abPointPairs;
}
/// Form inner products x and y and calculate scale.
static double CalculateScale(const Point2Pairs& d_abPointPairs,
const Rot2& aRb) {
double x = 0, y = 0;
for (const auto& [da, db] : d_abPointPairs) {
const Vector2 da_prime = aRb * db;
y += da.transpose() * da_prime;
x += da_prime.transpose() * da_prime;
}
const double s = y / x;
return s;
}
/// Form outer product H.
static Matrix2 CalculateH(const Point2Pairs& d_abPointPairs) {
Matrix2 H = Z_2x2;
for (const auto& [da, db] : d_abPointPairs) {
H += da * db.transpose();
}
return H;
}
/**
* @brief This method estimates the similarity transform from differences point
* pairs, given a known or estimated rotation and point centroids.
*
* @param d_abPointPairs
* @param aRb
* @param centroids
* @return Similarity2
*/
static Similarity2 Align(const Point2Pairs& d_abPointPairs, const Rot2& aRb,
const Point2Pair& centroids) {
const double s = CalculateScale(d_abPointPairs, aRb);
// dividing aTb by s is required because the registration cost function
// minimizes ||a - sRb - t||, whereas Sim(2) computes s(Rb + t)
const Point2 aTb = (centroids.first - s * (aRb * centroids.second)) / s;
return Similarity2(aRb, aTb, s);
}
/**
* @brief This method estimates the similarity transform from point pairs,
* given a known or estimated rotation.
* Refer to:
* http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
* Chapter 3
*
* @param abPointPairs
* @param aRb
* @return Similarity2
*/
static Similarity2 AlignGivenR(const Point2Pairs& abPointPairs,
const Rot2& aRb) {
auto centroids = means(abPointPairs);
auto d_abPointPairs = internal::SubtractCentroids(abPointPairs, centroids);
return internal::Align(d_abPointPairs, aRb, centroids);
}
} // namespace internal
Similarity2::Similarity2() : t_(0, 0), s_(1) {}
Similarity2::Similarity2(double s) : t_(0, 0), s_(s) {}
Similarity2::Similarity2(const Rot2& R, const Point2& t, double s)
: R_(R), t_(t), s_(s) {}
Similarity2::Similarity2(const Matrix2& R, const Vector2& t, double s)
: R_(Rot2::ClosestTo(R)), t_(t), s_(s) {}
Similarity2::Similarity2(const Matrix3& T)
: R_(Rot2::ClosestTo(T.topLeftCorner<2, 2>())),
t_(T.topRightCorner<2, 1>()),
s_(1.0 / T(2, 2)) {}
bool Similarity2::equals(const Similarity2& other, double tol) const {
return R_.equals(other.R_, tol) &&
traits<Point2>::Equals(t_, other.t_, tol) && s_ < (other.s_ + tol) &&
s_ > (other.s_ - tol);
}
bool Similarity2::operator==(const Similarity2& other) const {
return R_.matrix() == other.R_.matrix() && t_ == other.t_ && s_ == other.s_;
}
void Similarity2::print(const std::string& s) const {
std::cout << std::endl;
std::cout << s;
rotation().print("\nR:\n");
std::cout << "t: " << translation().transpose() << " s: " << scale()
<< std::endl;
}
Similarity2 Similarity2::Identity() { return Similarity2(); }
Similarity2 Similarity2::operator*(const Similarity2& S) const {
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);
}
Similarity2 Similarity2::inverse() const {
const Rot2 Rt = R_.inverse();
const Point2 sRt = Rt * (-s_ * t_);
return Similarity2(Rt, sRt, 1.0 / s_);
}
Point2 Similarity2::transformFrom(const Point2& p) const {
const Point2 q = R_ * p + t_;
return s_ * q;
}
Pose2 Similarity2::transformFrom(const Pose2& T) const {
Rot2 R = R_.compose(T.rotation());
Point2 t = Point2(s_ * (R_ * T.translation() + t_));
return Pose2(R, t);
}
Point2 Similarity2::operator*(const Point2& p) const {
return transformFrom(p);
}
Similarity2 Similarity2::Align(const Point2Pairs& abPointPairs) {
// Refer to Chapter 3 of
// http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
if (abPointPairs.size() < 2)
throw std::runtime_error("input should have at least 2 pairs of points");
auto centroids = means(abPointPairs);
auto d_abPointPairs = internal::SubtractCentroids(abPointPairs, centroids);
Matrix2 H = internal::CalculateH(d_abPointPairs);
// ClosestTo finds rotation matrix closest to H in Frobenius sense
Rot2 aRb = Rot2::ClosestTo(H);
return internal::Align(d_abPointPairs, aRb, centroids);
}
Similarity2 Similarity2::Align(const Pose2Pairs& abPosePairs) {
const size_t n = abPosePairs.size();
if (n < 2)
throw std::runtime_error("input should have at least 2 pairs of poses");
// calculate rotation
vector<Rot2> rotations;
Point2Pairs abPointPairs;
rotations.reserve(n);
abPointPairs.reserve(n);
// Below denotes the pose of the i'th object/camera/etc
// in frame "a" or frame "b".
for (const auto& [aTi, bTi] : abPosePairs) {
const Rot2 aRb = aTi.rotation().compose(bTi.rotation().inverse());
rotations.emplace_back(aRb);
abPointPairs.emplace_back(aTi.translation(), bTi.translation());
}
const Rot2 aRb_estimate = FindKarcherMean<Rot2>(rotations);
return internal::AlignGivenR(abPointPairs, aRb_estimate);
}
Matrix2 Similarity2::GetV(double theta, double lambda) {
// Derivation from https://ethaneade.com/lie_groups.pdf page 6
const double lambda2 = lambda * lambda, theta2 = theta * theta;
double A, B, C;
if (theta2 > 1e-9) {
A = sin(theta) / theta;
B = (1 - cos(theta)) / theta2;
C = (1 - A) / theta2;
} else {
// Taylor series expansion for theta=0
A = 1.0;
B = 0.5 - theta2 / 24.0;
C = 1.0 / 6.0 - theta2 / 120.0;
}
double alpha = 1.0 / (1.0 + theta2 / lambda2);
const double s = exp(lambda);
double s_inv = 1.0 / s;
double X = alpha * (1 - s_inv) / lambda + (1 - alpha) * (A - lambda * B);
double Y =
alpha * (s_inv - 1 + lambda) / lambda2 + (1 - alpha) * (B - lambda * C);
Matrix2 V;
V << X, -theta * Y, theta * Y, X;
return V;
}
Vector4 Similarity2::Logmap(const Similarity2& S, //
OptionalJacobian<4, 4> Hm) {
const Vector1 w = Rot2::Logmap(S.R_);
const double lambda = log(S.s_);
// In Expmap, t = V * u -> in Logmap, u = V^{-1} * t
Vector4 result;
result << GetV(w[0], lambda).inverse() * S.t_, w, lambda;
if (Hm) {
throw std::runtime_error("Similarity2::Logmap: derivative not implemented");
}
return result;
}
Similarity2 Similarity2::Expmap(const Vector4& v, //
OptionalJacobian<4, 4> Hm) {
const Vector2 u = v.head<2>();
const double theta = v[2];
const double lambda = v[3];
if (Hm) {
throw std::runtime_error("Similarity2::Expmap: derivative not implemented");
}
const Matrix2 V = GetV(theta, lambda);
return Similarity2(Rot2::Expmap(v.segment<1>(2)), V * u, exp(lambda));
}
Matrix4 Similarity2::AdjointMap() const {
throw std::runtime_error("Similarity2::AdjointMap not implemented");
}
Matrix3 Similarity2::Hat(const Vector4 &xi) {
const auto w = xi[2];
const auto u = xi.head<2>();
const double lambda = xi[3];
Matrix3 W;
W << 0, -w, u[0],
w, 0, u[1],
0, 0, -lambda;
return W;
}
Vector4 Similarity2::Vee(const Matrix3 &Xi) {
Vector4 xi;
xi[2] = Xi(1, 0);
xi.head<2>() = Xi.topRightCorner<2, 1>();
xi[3] = -Xi(2, 2);
return xi;
}
std::ostream& operator<<(std::ostream& os, const Similarity2& p) {
os << "[" << p.rotation().theta() << " " << p.translation().transpose() << " "
<< p.scale() << "]\';";
return os;
}
Matrix3 Similarity2::matrix() const {
Matrix3 T;
T.topRows<2>() << R_.matrix(), t_;
T.bottomRows<1>() << 0, 0, 1.0 / s_;
return T;
}
} // namespace gtsam