gtsam/gtsam_unstable/linear/ActiveSetSolver-inl.h

287 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ActiveSetSolver-inl.h
* @brief Implmentation of ActiveSetSolver.
* @author Ivan Dario Jimenez
* @author Duy Nguyen Ta
* @date 2/11/16
*/
#pragma once
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
/******************************************************************************/
// Convenient macros to reduce syntactic noise. undef later.
#define Template template <class PROBLEM, class POLICY, class INITSOLVER>
#define This ActiveSetSolver<PROBLEM, POLICY, INITSOLVER>
/******************************************************************************/
namespace gtsam {
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
* If some inactive inequality constraints complain about the full step (alpha = 1),
* we have to adjust alpha to stay within the inequality constraints' feasible regions.
*
* For each inactive inequality j:
* - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
* - We want: aj'*(xk + alpha*p) - bj <= 0
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
* it's good!
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
*
* We want the minimum of all those alphas among all inactive inequality.
*/
Template std::tuple<double, int> This::computeStepSize(
const InequalityFactorGraph& workingSet, const VectorValues& xk,
const VectorValues& p, const double& maxAlpha) const {
double minAlpha = maxAlpha;
int closestFactorIx = -1;
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
double b = factor->getb()[0];
// only check inactive factors
if (!factor->active()) {
// Compute a'*p
double aTp = factor->dotProductRow(p);
// Check if a'*p >0. Don't care if it's not.
if (aTp <= 0)
continue;
// Compute a'*xk
double aTx = factor->dotProductRow(xk);
// alpha = (b - a'*xk) / (a'*p)
double alpha = (b - aTx) / aTp;
// We want the minimum of all those max alphas
if (alpha < minAlpha) {
closestFactorIx = factorIx;
minAlpha = alpha;
}
}
}
return std::make_tuple(minAlpha, closestFactorIx);
}
/******************************************************************************/
/*
* The goal of this function is to find currently active inequality constraints
* that violate the condition to be active. The one that violates the condition
* the most will be removed from the active set. See Nocedal06book, pg 469-471
*
* Find the BAD active inequality that pulls x strongest to the wrong direction
* of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
*
* For active inequality constraints (those that are enforced as equality constraints
* in the current working set), we want lambda < 0.
* This is because:
* - From the Lagrangian L = f - lambda*c, we know that the constraint force
* is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
* on the constraint surface, the constraint force has to balance out with
* other unconstrained forces that are pulling x towards the unconstrained
* minimum point. The other unconstrained forces are pulling x toward (-\grad f),
* hence the constraint force has to be exactly \grad f, so that the total
* force is 0.
* - We also know that at the constraint surface c(x)=0, \grad c points towards + (>= 0),
* while we are solving for - (<=0) constraint.
* - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
* i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
* That means we want lambda < 0.
* - This is because when the constrained force pulls x towards the infeasible region (+),
* the unconstrained force is pulling x towards the opposite direction into
* the feasible region (again because the total force has to be 0 to make x stay still)
* So we can drop this constraint to have a lower error but feasible solution.
*
* In short, active inequality constraints with lambda > 0 are BAD, because they
* violate the condition to be active.
*
* And we want to remove the worst one with the largest lambda from the active set.
*
*/
Template int This::identifyLeavingConstraint(
const InequalityFactorGraph& workingSet,
const VectorValues& lambdas) const {
int worstFactorIx = -1;
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
// inactive or a good inequality constraint, so we don't care!
double maxLambda = 0.0;
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
if (factor->active()) {
double lambda = lambdas.at(factor->dualKey())[0];
if (lambda > maxLambda) {
worstFactorIx = factorIx;
maxLambda = lambda;
}
}
}
return worstFactorIx;
}
//******************************************************************************
Template JacobianFactor::shared_ptr This::createDualFactor(
Key key, const InequalityFactorGraph& workingSet,
const VectorValues& delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the
// dual key
TermsContainer Aterms = collectDualJacobians<LinearEquality>(
key, problem_.equalities, equalityVariableIndex_);
TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = problem_.costGradient(key, delta);
// to compute the least-square approximation of dual variables
return std::make_shared<JacobianFactor>(Aterms, b);
} else {
return nullptr;
}
}
/******************************************************************************/
/* This function will create a dual graph that solves for the
* lagrange multipliers for the current working set.
* You can use lagrange multipliers as a necessary condition for optimality.
* The factor graph that is being solved is f' = -lambda * g'
* where f is the optimized function and g is the function resulting from
* aggregating the working set.
* The lambdas give you information about the feasibility of a constraint.
* if lambda < 0 the constraint is Ok
* if lambda = 0 you are on the constraint
* if lambda > 0 you are violating the constraint.
*/
Template GaussianFactorGraph This::buildDualGraph(
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
GaussianFactorGraph dualGraph;
for (Key key : constrainedKeys_) {
// Each constrained key becomes a factor in the dual graph
auto dualFactor = createDualFactor(key, workingSet, delta);
if (dualFactor) dualGraph.push_back(dualFactor);
}
return dualGraph;
}
//******************************************************************************
Template GaussianFactorGraph
This::buildWorkingGraph(const InequalityFactorGraph& workingSet,
const VectorValues& xk) const {
GaussianFactorGraph workingGraph;
workingGraph.push_back(POLICY::buildCostFunction(problem_, xk));
workingGraph.push_back(problem_.equalities);
for (const LinearInequality::shared_ptr& factor : workingSet)
if (factor->active()) workingGraph.push_back(factor);
return workingGraph;
}
//******************************************************************************
Template typename This::State This::iterate(
const typename This::State& state) const {
// Algorithm 16.3 from Nocedal06book.
// Solve with the current working set eqn 16.39, but solve for x not p
auto workingGraph = buildWorkingGraph(state.workingSet, state.values);
VectorValues newValues = workingGraph.optimize();
// If we CAN'T move further
// if p_k = 0 is the original condition, modified by Duy to say that the state
// update is zero.
if (newValues.equals(state.values, 1e-7)) {
// Compute lambda from the dual graph
auto dualGraph = buildDualGraph(state.workingSet, newValues);
VectorValues duals = dualGraph.optimize();
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
return State(newValues, duals, state.workingSet, true,
state.iterations + 1);
} else {
// Inactivate the leaving constraint
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return State(newValues, duals, newWorkingSet, false,
state.iterations + 1);
}
} else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
VectorValues p = newValues - state.values;
const auto [alpha, factorIx] = // using 16.41
computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha);
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return State(newValues, state.duals, newWorkingSet, false,
state.iterations + 1);
}
}
//******************************************************************************
Template InequalityFactorGraph This::identifyActiveConstraints(
const InequalityFactorGraph& inequalities,
const VectorValues& initialValues, const VectorValues& duals,
bool useWarmStart) const {
InequalityFactorGraph workingSet;
for (const LinearInequality::shared_ptr& factor : inequalities) {
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
if (useWarmStart && duals.size() > 0) {
if (duals.exists(workingFactor->dualKey())) workingFactor->activate();
else workingFactor->inactivate();
} else {
double error = workingFactor->error(initialValues);
// Safety guard. This should not happen unless users provide a bad init
if (error > 0) throw InfeasibleInitialValues();
if (std::abs(error) < 1e-7)
workingFactor->activate();
else
workingFactor->inactivate();
}
workingSet.push_back(workingFactor);
}
return workingSet;
}
//******************************************************************************
Template std::pair<VectorValues, VectorValues> This::optimize(
const VectorValues& initialValues, const VectorValues& duals,
bool useWarmStart) const {
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet = identifyActiveConstraints(
problem_.inequalities, initialValues, duals, useWarmStart);
State state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged) state = iterate(state);
return std::make_pair(state.values, state.duals);
}
//******************************************************************************
Template std::pair<VectorValues, VectorValues> This::optimize() const {
INITSOLVER initSolver(problem_);
VectorValues initValues = initSolver.solve();
return optimize(initValues);
}
}
#undef Template
#undef This