/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ActiveSetSolver-inl.h * @brief Implmentation of ActiveSetSolver. * @author Ivan Dario Jimenez * @author Duy Nguyen Ta * @date 2/11/16 */ #pragma once #include /******************************************************************************/ // Convenient macros to reduce syntactic noise. undef later. #define Template template #define This ActiveSetSolver /******************************************************************************/ namespace gtsam { /* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints * If some inactive inequality constraints complain about the full step (alpha = 1), * we have to adjust alpha to stay within the inequality constraints' feasible regions. * * For each inactive inequality j: * - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints * - We want: aj'*(xk + alpha*p) - bj <= 0 * - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0 * it's good! * - We only care when aj'*p > 0. In this case, we need to choose alpha so that * aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p) * We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p) * * We want the minimum of all those alphas among all inactive inequality. */ Template std::tuple This::computeStepSize( const InequalityFactorGraph& workingSet, const VectorValues& xk, const VectorValues& p, const double& maxAlpha) const { double minAlpha = maxAlpha; int closestFactorIx = -1; for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) { const LinearInequality::shared_ptr& factor = workingSet.at(factorIx); double b = factor->getb()[0]; // only check inactive factors if (!factor->active()) { // Compute a'*p double aTp = factor->dotProductRow(p); // Check if a'*p >0. Don't care if it's not. if (aTp <= 0) continue; // Compute a'*xk double aTx = factor->dotProductRow(xk); // alpha = (b - a'*xk) / (a'*p) double alpha = (b - aTx) / aTp; // We want the minimum of all those max alphas if (alpha < minAlpha) { closestFactorIx = factorIx; minAlpha = alpha; } } } return std::make_tuple(minAlpha, closestFactorIx); } /******************************************************************************/ /* * The goal of this function is to find currently active inequality constraints * that violate the condition to be active. The one that violates the condition * the most will be removed from the active set. See Nocedal06book, pg 469-471 * * Find the BAD active inequality that pulls x strongest to the wrong direction * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0) * * For active inequality constraints (those that are enforced as equality constraints * in the current working set), we want lambda < 0. * This is because: * - From the Lagrangian L = f - lambda*c, we know that the constraint force * is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay * on the constraint surface, the constraint force has to balance out with * other unconstrained forces that are pulling x towards the unconstrained * minimum point. The other unconstrained forces are pulling x toward (-\grad f), * hence the constraint force has to be exactly \grad f, so that the total * force is 0. * - We also know that at the constraint surface c(x)=0, \grad c points towards + (>= 0), * while we are solving for - (<=0) constraint. * - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction * i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied. * That means we want lambda < 0. * - This is because when the constrained force pulls x towards the infeasible region (+), * the unconstrained force is pulling x towards the opposite direction into * the feasible region (again because the total force has to be 0 to make x stay still) * So we can drop this constraint to have a lower error but feasible solution. * * In short, active inequality constraints with lambda > 0 are BAD, because they * violate the condition to be active. * * And we want to remove the worst one with the largest lambda from the active set. * */ Template int This::identifyLeavingConstraint( const InequalityFactorGraph& workingSet, const VectorValues& lambdas) const { int worstFactorIx = -1; // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either // inactive or a good inequality constraint, so we don't care! double maxLambda = 0.0; for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) { const LinearInequality::shared_ptr& factor = workingSet.at(factorIx); if (factor->active()) { double lambda = lambdas.at(factor->dualKey())[0]; if (lambda > maxLambda) { worstFactorIx = factorIx; maxLambda = lambda; } } } return worstFactorIx; } //****************************************************************************** Template JacobianFactor::shared_ptr This::createDualFactor( Key key, const InequalityFactorGraph& workingSet, const VectorValues& delta) const { // Transpose the A matrix of constrained factors to have the jacobian of the // dual key TermsContainer Aterms = collectDualJacobians( key, problem_.equalities, equalityVariableIndex_); TermsContainer AtermsInequalities = collectDualJacobians( key, workingSet, inequalityVariableIndex_); Aterms.insert(Aterms.end(), AtermsInequalities.begin(), AtermsInequalities.end()); // Collect the gradients of unconstrained cost factors to the b vector if (Aterms.size() > 0) { Vector b = problem_.costGradient(key, delta); // to compute the least-square approximation of dual variables return std::make_shared(Aterms, b); } else { return nullptr; } } /******************************************************************************/ /* This function will create a dual graph that solves for the * lagrange multipliers for the current working set. * You can use lagrange multipliers as a necessary condition for optimality. * The factor graph that is being solved is f' = -lambda * g' * where f is the optimized function and g is the function resulting from * aggregating the working set. * The lambdas give you information about the feasibility of a constraint. * if lambda < 0 the constraint is Ok * if lambda = 0 you are on the constraint * if lambda > 0 you are violating the constraint. */ Template GaussianFactorGraph This::buildDualGraph( const InequalityFactorGraph& workingSet, const VectorValues& delta) const { GaussianFactorGraph dualGraph; for (Key key : constrainedKeys_) { // Each constrained key becomes a factor in the dual graph auto dualFactor = createDualFactor(key, workingSet, delta); if (dualFactor) dualGraph.push_back(dualFactor); } return dualGraph; } //****************************************************************************** Template GaussianFactorGraph This::buildWorkingGraph(const InequalityFactorGraph& workingSet, const VectorValues& xk) const { GaussianFactorGraph workingGraph; workingGraph.push_back(POLICY::buildCostFunction(problem_, xk)); workingGraph.push_back(problem_.equalities); for (const LinearInequality::shared_ptr& factor : workingSet) if (factor->active()) workingGraph.push_back(factor); return workingGraph; } //****************************************************************************** Template typename This::State This::iterate( const typename This::State& state) const { // Algorithm 16.3 from Nocedal06book. // Solve with the current working set eqn 16.39, but solve for x not p auto workingGraph = buildWorkingGraph(state.workingSet, state.values); VectorValues newValues = workingGraph.optimize(); // If we CAN'T move further // if p_k = 0 is the original condition, modified by Duy to say that the state // update is zero. if (newValues.equals(state.values, 1e-7)) { // Compute lambda from the dual graph auto dualGraph = buildDualGraph(state.workingSet, newValues); VectorValues duals = dualGraph.optimize(); int leavingFactor = identifyLeavingConstraint(state.workingSet, duals); // If all inequality constraints are satisfied: We have the solution!! if (leavingFactor < 0) { return State(newValues, duals, state.workingSet, true, state.iterations + 1); } else { // Inactivate the leaving constraint InequalityFactorGraph newWorkingSet = state.workingSet; newWorkingSet.at(leavingFactor)->inactivate(); return State(newValues, duals, newWorkingSet, false, state.iterations + 1); } } else { // If we CAN make some progress, i.e. p_k != 0 // Adapt stepsize if some inactive constraints complain about this move VectorValues p = newValues - state.values; const auto [alpha, factorIx] = // using 16.41 computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha); // also add to the working set the one that complains the most InequalityFactorGraph newWorkingSet = state.workingSet; if (factorIx >= 0) newWorkingSet.at(factorIx)->activate(); // step! newValues = state.values + alpha * p; return State(newValues, state.duals, newWorkingSet, false, state.iterations + 1); } } //****************************************************************************** Template InequalityFactorGraph This::identifyActiveConstraints( const InequalityFactorGraph& inequalities, const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const { InequalityFactorGraph workingSet; for (const LinearInequality::shared_ptr& factor : inequalities) { LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor)); if (useWarmStart && duals.size() > 0) { if (duals.exists(workingFactor->dualKey())) workingFactor->activate(); else workingFactor->inactivate(); } else { double error = workingFactor->error(initialValues); // Safety guard. This should not happen unless users provide a bad init if (error > 0) throw InfeasibleInitialValues(); if (std::abs(error) < 1e-7) workingFactor->activate(); else workingFactor->inactivate(); } workingSet.push_back(workingFactor); } return workingSet; } //****************************************************************************** Template std::pair This::optimize( const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const { // Initialize workingSet from the feasible initialValues InequalityFactorGraph workingSet = identifyActiveConstraints( problem_.inequalities, initialValues, duals, useWarmStart); State state(initialValues, duals, workingSet, false, 0); /// main loop of the solver while (!state.converged) state = iterate(state); return std::make_pair(state.values, state.duals); } //****************************************************************************** Template std::pair This::optimize() const { INITSOLVER initSolver(problem_); VectorValues initValues = initSolver.solve(); return optimize(initValues); } } #undef Template #undef This