gtsam/gtsam/geometry/SO4.cpp

235 lines
7.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SO4.cpp
* @brief 4*4 matrix representation of SO(4)
* @author Frank Dellaert
* @author Luca Carlone
*/
#include <gtsam/base/concepts.h>
#include <gtsam/base/timing.h>
#include <gtsam/geometry/SO4.h>
#include <gtsam/geometry/Unit3.h>
#include <Eigen/Eigenvalues>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <random>
#include <vector>
using namespace std;
namespace gtsam {
// TODO(frank): is this better than SOn::Random?
// /* *************************************************************************
// */ static Vector3 randomOmega(std::mt19937 &rng) {
// static std::uniform_real_distribution<double> randomAngle(-M_PI, M_PI);
// return Unit3::Random(rng).unitVector() * randomAngle(rng);
// }
// /* *************************************************************************
// */
// // Create random SO(4) element using direct product of lie algebras.
// SO4 SO4::Random(std::mt19937 &rng) {
// Vector6 delta;
// delta << randomOmega(rng), randomOmega(rng);
// return SO4::Expmap(delta);
// }
//******************************************************************************
template <>
GTSAM_EXPORT
Matrix4 SO4::Hat(const Vector6& xi) {
// skew symmetric matrix X = xi^
// Unlike Luca, makes upper-left the SO(3) subgroup.
Matrix4 Y = Z_4x4;
Y(0, 1) = -xi(5);
Y(0, 2) = +xi(4);
Y(1, 2) = -xi(3);
Y(0, 3) = +xi(2);
Y(1, 3) = -xi(1);
Y(2, 3) = +xi(0);
return Y - Y.transpose();
}
//******************************************************************************
template <>
GTSAM_EXPORT
Vector6 SO4::Vee(const Matrix4& X) {
Vector6 xi;
xi(5) = -X(0, 1);
xi(4) = +X(0, 2);
xi(3) = -X(1, 2);
xi(2) = +X(0, 3);
xi(1) = -X(1, 3);
xi(0) = +X(2, 3);
return xi;
}
//******************************************************************************
/* Exponential map, porting MATLAB implementation by Luca, which follows
* "SOME REMARKS ON THE EXPONENTIAL MAP ON THE GROUPS SO(n) AND SE(n)" by
* Ramona-Andreaa Rohan */
template <>
GTSAM_EXPORT
SO4 SO4::Expmap(const Vector6& xi, ChartJacobian H) {
using namespace std;
if (H) throw std::runtime_error("SO4::Expmap Jacobian");
// skew symmetric matrix X = xi^
const Matrix4 X = Hat(xi);
// do eigen-decomposition
auto eig = Eigen::EigenSolver<Matrix4>(X);
Eigen::Vector4cd e = eig.eigenvalues();
using std::abs;
sort(e.data(), e.data() + 4, [](complex<double> a, complex<double> b) {
return abs(a.imag()) > abs(b.imag());
});
// Get a and b from eigenvalues +/i ai and +/- bi
double a = e[0].imag(), b = e[2].imag();
if (!e.real().isZero() || e[1].imag() != -a || e[3].imag() != -b) {
throw runtime_error("SO4::Expmap: wrong eigenvalues.");
}
// Build expX = exp(xi^)
Matrix4 expX;
using std::cos;
using std::sin;
const auto X2 = X * X;
const auto X3 = X2 * X;
double a2 = a * a, a3 = a2 * a, b2 = b * b, b3 = b2 * b;
if (a != 0 && b == 0) {
double c2 = (1 - cos(a)) / a2, c3 = (a - sin(a)) / a3;
return SO4(I_4x4 + X + c2 * X2 + c3 * X3);
} else if (a == b && b != 0) {
double sin_a = sin(a), cos_a = cos(a);
double c0 = (a * sin_a + 2 * cos_a) / 2,
c1 = (3 * sin_a - a * cos_a) / (2 * a), c2 = sin_a / (2 * a),
c3 = (sin_a - a * cos_a) / (2 * a3);
return SO4(c0 * I_4x4 + c1 * X + c2 * X2 + c3 * X3);
} else if (a != b) {
double sin_a = sin(a), cos_a = cos(a);
double sin_b = sin(b), cos_b = cos(b);
double c0 = (b2 * cos_a - a2 * cos_b) / (b2 - a2),
c1 = (b3 * sin_a - a3 * sin_b) / (a * b * (b2 - a2)),
c2 = (cos_a - cos_b) / (b2 - a2),
c3 = (b * sin_a - a * sin_b) / (a * b * (b2 - a2));
return SO4(c0 * I_4x4 + c1 * X + c2 * X2 + c3 * X3);
} else {
return SO4();
}
}
//******************************************************************************
// local vectorize
static SO4::VectorN2 vec4(const Matrix4& Q) {
return Eigen::Map<const SO4::VectorN2>(Q.data());
}
// so<4> generators
static std::vector<Matrix4, Eigen::aligned_allocator<Matrix4> > G4(
{SO4::Hat(Vector6::Unit(0)), SO4::Hat(Vector6::Unit(1)),
SO4::Hat(Vector6::Unit(2)), SO4::Hat(Vector6::Unit(3)),
SO4::Hat(Vector6::Unit(4)), SO4::Hat(Vector6::Unit(5))});
// vectorized generators
static const Eigen::Matrix<double, 16, 6> P4 =
(Eigen::Matrix<double, 16, 6>() << vec4(G4[0]), vec4(G4[1]), vec4(G4[2]),
vec4(G4[3]), vec4(G4[4]), vec4(G4[5]))
.finished();
//******************************************************************************
template <>
GTSAM_EXPORT
Matrix6 SO4::AdjointMap() const {
// Elaborate way of calculating the AdjointMap
// TODO(frank): find a closed form solution. In SO(3) is just R :-/
const Matrix4& Q = matrix_;
const Matrix4 Qt = Q.transpose();
Matrix6 A;
for (size_t i = 0; i < 6; i++) {
// Calculate column i of linear map for coeffcient of Gi
A.col(i) = SO4::Vee(Q * G4[i] * Qt);
}
return A;
}
//******************************************************************************
template <>
GTSAM_EXPORT
SO4::VectorN2 SO4::vec(OptionalJacobian<16, 6> H) const {
const Matrix& Q = matrix_;
if (H) {
// As Luca calculated, this is (I4 \oplus Q) * P4
*H << Q * P4.block<4, 6>(0, 0), Q * P4.block<4, 6>(4, 0),
Q * P4.block<4, 6>(8, 0), Q * P4.block<4, 6>(12, 0);
}
return gtsam::vec4(Q);
}
///******************************************************************************
template <>
GTSAM_EXPORT
SO4 SO4::ChartAtOrigin::Retract(const Vector6& xi, ChartJacobian H) {
if (H) throw std::runtime_error("SO4::ChartAtOrigin::Retract Jacobian");
gttic(SO4_Retract);
const Matrix4 X = Hat(xi / 2);
return SO4((I_4x4 + X) * (I_4x4 - X).inverse());
}
//******************************************************************************
template <>
GTSAM_EXPORT
Vector6 SO4::ChartAtOrigin::Local(const SO4& Q, ChartJacobian H) {
if (H) throw std::runtime_error("SO4::ChartAtOrigin::Retract Jacobian");
const Matrix4& R = Q.matrix();
const Matrix4 X = (I_4x4 - R) * (I_4x4 + R).inverse();
return -2 * Vee(X);
}
//******************************************************************************
GTSAM_EXPORT Matrix3 topLeft(const SO4& Q, OptionalJacobian<9, 6> H) {
const Matrix4& R = Q.matrix();
const Matrix3 M = R.topLeftCorner<3, 3>();
if (H) {
const Vector3 m1 = M.col(0), m2 = M.col(1), m3 = M.col(2),
q = R.topRightCorner<3, 1>();
*H << Z_3x1, Z_3x1, -q, Z_3x1, -m3, m2, //
Z_3x1, q, Z_3x1, m3, Z_3x1, -m1, //
-q, Z_3x1, Z_3x1, -m2, m1, Z_3x1;
}
return M;
}
//******************************************************************************
GTSAM_EXPORT Matrix43 stiefel(const SO4& Q, OptionalJacobian<12, 6> H) {
const Matrix4& R = Q.matrix();
const Matrix43 M = R.leftCols<3>();
if (H) {
const auto &m1 = R.col(0), m2 = R.col(1), m3 = R.col(2), q = R.col(3);
*H << Z_4x1, Z_4x1, -q, Z_4x1, -m3, m2, //
Z_4x1, q, Z_4x1, m3, Z_4x1, -m1, //
-q, Z_4x1, Z_4x1, -m2, m1, Z_4x1;
}
return M;
}
//******************************************************************************
} // end namespace gtsam