gtsam/gtsam_unstable/partition/GenericGraph.h

150 lines
6.6 KiB
C++

/*
* GenericGraph.h
*
* Created on: Nov 22, 2010
* Author: nikai
* Description: generic graph types used in partitioning
*/
#pragma once
#include <list>
#include <vector>
#include <stdexcept>
#include <boost/shared_ptr.hpp>
#include "PartitionWorkSpace.h"
namespace gtsam { namespace partition {
/***************************************************
* 2D generic factors and their factor graph
***************************************************/
enum GenericNode2DType { NODE_POSE_2D, NODE_LANDMARK_2D };
/** the index of the node and the type of the node */
struct GenericNode2D {
std::size_t index;
GenericNode2DType type;
GenericNode2D (const std::size_t& index_in, const GenericNode2DType& type_in) : index(index_in), type(type_in) {}
};
/** a factor always involves two nodes/variables for now */
struct GenericFactor2D {
GenericNode2D key1;
GenericNode2D key2;
int index; // the factor index in the original nonlinear factor graph
int weight; // the weight of the edge
GenericFactor2D(const size_t index1, const GenericNode2DType type1, const size_t index2, const GenericNode2DType type2, const int index_ = -1, const int weight_ = 1)
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
GenericFactor2D(const size_t index1, const char type1, const size_t index2, const char type2, const int index_ = -1, const int weight_ = 1)
: key1(index1, type1 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D),
key2(index2, type2 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_), weight(weight_) {}
};
/** graph is a collection of factors */
typedef boost::shared_ptr<GenericFactor2D> sharedGenericFactor2D;
typedef std::vector<sharedGenericFactor2D> GenericGraph2D;
/** merge nodes in DSF using constraints captured by the given graph */
std::list<std::vector<size_t> > findIslands(const GenericGraph2D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
/** eliminate the sensors from generic graph */
inline void reduceGenericGraph(const GenericGraph2D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
const std::vector<int>& dictionary, GenericGraph2D& reducedGraph) {
throw std::runtime_error("reduceGenericGraph 2d not implemented");
}
/** check whether the 2D graph is singular (under constrained) , Dummy function for 2D */
inline void checkSingularity(const GenericGraph2D& graph, const std::vector<size_t>& frontals,
WorkSpace& workspace, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { return; }
/** print the graph **/
void print(const GenericGraph2D& graph, const std::string name = "GenericGraph2D");
/***************************************************
* 3D generic factors and their factor graph
***************************************************/
enum GenericNode3DType { NODE_POSE_3D, NODE_LANDMARK_3D };
// const int minNrConstraintsPerCamera = 7;
// const int minNrConstraintsPerLandmark = 2;
/** the index of the node and the type of the node */
struct GenericNode3D {
std::size_t index;
GenericNode3DType type;
GenericNode3D (const std::size_t& index_in, const GenericNode3DType& type_in) : index(index_in), type(type_in) {}
};
/** a factor always involves two nodes/variables for now */
struct GenericFactor3D {
GenericNode3D key1;
GenericNode3D key2;
int index; // the index in the entire graph, 0-based
int weight; // the weight of the edge
GenericFactor3D() :key1(-1, NODE_POSE_3D), key2(-1, NODE_LANDMARK_3D), index(-1), weight(1) {}
GenericFactor3D(const size_t index1, const size_t index2, const int index_ = -1,
const GenericNode3DType type1 = NODE_POSE_3D, const GenericNode3DType type2 = NODE_LANDMARK_3D, const int weight_ = 1)
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
};
/** graph is a collection of factors */
typedef boost::shared_ptr<GenericFactor3D> sharedGenericFactor3D;
typedef std::vector<sharedGenericFactor3D> GenericGraph3D;
/** merge nodes in DSF using constraints captured by the given graph */
std::list<std::vector<size_t> > findIslands(const GenericGraph3D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
/** eliminate the sensors from generic graph */
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph);
/** check whether the 3D graph is singular (under constrained) */
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
/** print the graph **/
void print(const GenericGraph3D& graph, const std::string name = "GenericGraph3D");
/***************************************************
* unary generic factors and their factor graph
***************************************************/
/** a factor involves a single variable */
struct GenericUnaryFactor {
GenericNode2D key;
int index; // the factor index in the original nonlinear factor graph
GenericUnaryFactor(const size_t key_, const GenericNode2DType type_, const int index_ = -1)
: key(key_, type_), index(index_) {}
GenericUnaryFactor(const size_t key_, const char type_, const int index_ = -1)
: key(key_, type_ == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_) {}
};
/** graph is a collection of factors */
typedef boost::shared_ptr<GenericUnaryFactor> sharedGenericUnaryFactor;
typedef std::vector<sharedGenericUnaryFactor> GenericUnaryGraph;
/***************************************************
* utility functions
***************************************************/
inline bool hasCommonCamera(const std::set<size_t>& cameras1, const std::set<size_t>& cameras2) {
if (cameras1.empty() || cameras2.empty())
throw std::invalid_argument("hasCommonCamera: the input camera set is empty!");
std::set<size_t>::const_iterator it1 = cameras1.begin();
std::set<size_t>::const_iterator it2 = cameras2.begin();
while (it1 != cameras1.end() && it2 != cameras2.end()) {
if (*it1 == *it2)
return true;
else if (*it1 < *it2)
it1++;
else
it2++;
}
return false;
}
}} // namespace