gtsam/gtsam.h

2465 lines
86 KiB
C++

/**
* GTSAM Wrap Module Definition
*
* These are the current classes available through the matlab toolbox interface,
* add more functions/classes as they are available.
*
* Requirements:
* Classes must start with an uppercase letter
* - Can wrap a typedef
* Only one Method/Constructor per line, though methods/constructors can extend across multiple lines
* Methods can return
* - Eigen types: Matrix, Vector
* - C/C++ basic types: string, bool, size_t, int, double, char, unsigned char
* - void
* - Any class with which be copied with boost::make_shared()
* - boost::shared_ptr of any object type
* Constructors
* - Overloads are supported
* - A class with no constructors can be returned from other functions but not allocated directly in MATLAB
* Methods
* - Constness has no effect
* - Specify by-value (not reference) return types, even if C++ method returns reference
* - Must start with a letter (upper or lowercase)
* - Overloads are supported
* Static methods
* - Must start with a letter (upper or lowercase) and use the "static" keyword
* - The first letter will be made uppercase in the generated MATLAB interface
* - Overloads are supported
* Arguments to functions any of
* - Eigen types: Matrix, Vector
* - Eigen types and classes as an optionally const reference
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - Any class with which be copied with boost::make_shared() (except Eigen)
* - boost::shared_ptr of any object type (except Eigen)
* Comments can use either C++ or C style, with multiple lines
* Namespace definitions
* - Names of namespaces must start with a lowercase letter
* - start a namespace with "namespace {"
* - end a namespace with exactly "}"
* - Namespaces can be nested
* Namespace usage
* - Namespaces can be specified for classes in arguments and return values
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
* Includes in C++ wrappers
* - All includes will be collected and added in a single file
* - All namespaces must have angle brackets: <path>
* - No default includes will be added
* Global/Namespace functions
* - Functions specified outside of a class are global
* - Can be overloaded with different arguments
* - Can have multiple functions of the same name in different namespaces
* Using classes defined in other modules
* - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error
* Virtual inheritance
* - Specify fully-qualified base classes, i.e. "virtual class Derived : ns::Base {" where "ns" is the namespace
* - Mark with 'virtual' keyword, e.g. "virtual class Base {", and also "virtual class Derived : ns::Base {"
* - Forward declarations must also be marked virtual, e.g. "virtual class ns::Base;" and
* also "virtual class ns::Derived;"
* - Pure virtual (abstract) classes should list no constructors in this interface file
* - Virtual classes must have a clone() function in C++ (though it does not have to be included
* in the MATLAB interface). clone() will be called whenever an object copy is needed, instead
* of using the copy constructor (which is used for non-virtual objects).
* - Signature of clone function - will be called virtually, so must appear at least at the top of the inheritance tree
* virtual boost::shared_ptr<CLASS_NAME> clone() const;
* Class Templates
* - Basic templates are supported either with an explicit list of types to instantiate,
* e.g. template<T = {gtsam::Pose2, gtsam::Rot2, gtsam::Point3}> class Class1 { ... };
* or with typedefs, e.g.
* template<T, U> class Class2 { ... };
* typedef Class2<Type1, Type2> MyInstantiatedClass;
* - In the class definition, appearances of the template argument(s) will be replaced with their
* instantiated types, e.g. 'void setValue(const T& value);'.
* - To refer to the instantiation of the template class itself, use 'This', i.e. 'static This Create();'
* - To create new instantiations in other modules, you must copy-and-paste the whole class definition
* into the new module, but use only your new instantiation types.
* - When forward-declaring template instantiations, use the generated/typedefed name, e.g.
* class gtsam::Class1Pose2;
* class gtsam::MyInstantiatedClass;
* Boost.serialization within Matlab:
* - you need to mark classes as being serializable in the markup file (see this file for an example).
* - There are two options currently, depending on the class. To "mark" a class as serializable,
* add a function with a particular signature so that wrap will catch it.
* - Add "void serialize()" to a class to create serialization functions for a class.
* Adding this flag subsumes the serializable() flag below. Requirements:
* - A default constructor must be publicly accessible
* - Must not be an abstract base class
* - The class must have an actual boost.serialization serialize() function.
* - Add "void serializable()" to a class if you only want the class to be serialized as a
* part of a container (such as noisemodel). This version does not require a publicly
* accessible default constructor.
*/
/**
* Status:
* - TODO: default values for arguments
* - WORKAROUND: make multiple versions of the same function for different configurations of default arguments
* - TODO: Handle gtsam::Rot3M conversions to quaternions
* - TODO: Parse return of const ref arguments
* - TODO: Parse std::string variants and convert directly to special string
* - TODO: Add enum support
* - TODO: Add generalized serialization support via boost.serialization with hooks to matlab save/load
*/
namespace std {
#include <vector>
template<T>
class vector
{
//Do we need these?
//Capacity
/*size_t size() const;
size_t max_size() const;
//void resize(size_t sz);
size_t capacity() const;
bool empty() const;
void reserve(size_t n);
//Element access
T* at(size_t n);
T* front();
T* back();
//Modifiers
void assign(size_t n, const T& u);
void push_back(const T& x);
void pop_back();*/
};
//typedef std::vector
#include<list>
template<T>
class list
{
};
}
namespace gtsam {
//*************************************************************************
// base
//*************************************************************************
/** gtsam namespace functions */
bool linear_independent(Matrix A, Matrix B, double tol);
virtual class Value {
// No constructors because this is an abstract class
// Testable
void print(string s) const;
// Manifold
size_t dim() const;
};
#include <gtsam/base/LieScalar.h>
virtual class LieScalar : gtsam::Value {
// Standard constructors
LieScalar();
LieScalar(double d);
// Standard interface
double value() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieScalar& expected, double tol) const;
// Group
static gtsam::LieScalar identity();
gtsam::LieScalar inverse() const;
gtsam::LieScalar compose(const gtsam::LieScalar& p) const;
gtsam::LieScalar between(const gtsam::LieScalar& l2) const;
// Manifold
size_t dim() const;
gtsam::LieScalar retract(Vector v) const;
Vector localCoordinates(const gtsam::LieScalar& t2) const;
// Lie group
static gtsam::LieScalar Expmap(Vector v);
static Vector Logmap(const gtsam::LieScalar& p);
};
#include <gtsam/base/LieVector.h>
virtual class LieVector : gtsam::Value {
// Standard constructors
LieVector();
LieVector(Vector v);
// Standard interface
Vector vector() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieVector& expected, double tol) const;
// Group
static gtsam::LieVector identity();
gtsam::LieVector inverse() const;
gtsam::LieVector compose(const gtsam::LieVector& p) const;
gtsam::LieVector between(const gtsam::LieVector& l2) const;
// Manifold
size_t dim() const;
gtsam::LieVector retract(Vector v) const;
Vector localCoordinates(const gtsam::LieVector& t2) const;
// Lie group
static gtsam::LieVector Expmap(Vector v);
static Vector Logmap(const gtsam::LieVector& p);
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/base/LieMatrix.h>
virtual class LieMatrix : gtsam::Value {
// Standard constructors
LieMatrix();
LieMatrix(Matrix v);
// Standard interface
Matrix matrix() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieMatrix& expected, double tol) const;
// Group
static gtsam::LieMatrix identity();
gtsam::LieMatrix inverse() const;
gtsam::LieMatrix compose(const gtsam::LieMatrix& p) const;
gtsam::LieMatrix between(const gtsam::LieMatrix& l2) const;
// Manifold
size_t dim() const;
gtsam::LieMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::LieMatrix & t2) const;
// Lie group
static gtsam::LieMatrix Expmap(Vector v);
static Vector Logmap(const gtsam::LieMatrix& p);
// enabling serialization functionality
void serialize() const;
};
//*************************************************************************
// geometry
//*************************************************************************
virtual class Point2 : gtsam::Value {
// Standard Constructors
Point2();
Point2(double x, double y);
Point2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point2& pose, double tol) const;
// Group
static gtsam::Point2 identity();
gtsam::Point2 inverse() const;
gtsam::Point2 compose(const gtsam::Point2& p2) const;
gtsam::Point2 between(const gtsam::Point2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point2& p) const;
// Lie Group
static gtsam::Point2 Expmap(Vector v);
static Vector Logmap(const gtsam::Point2& p);
// Standard Interface
double x() const;
double y() const;
Vector vector() const;
double dist(const gtsam::Point2& p2) const;
double norm() const;
// enabling serialization functionality
void serialize() const;
};
virtual class StereoPoint2 : gtsam::Value {
// Standard Constructors
StereoPoint2();
StereoPoint2(double uL, double uR, double v);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::StereoPoint2 retract(Vector v) const;
Vector localCoordinates(const gtsam::StereoPoint2& p) const;
// Lie Group
static gtsam::StereoPoint2 Expmap(Vector v);
static Vector Logmap(const gtsam::StereoPoint2& p);
// Standard Interface
Vector vector() const;
double uL() const;
double uR() const;
double v() const;
// enabling serialization functionality
void serialize() const;
};
virtual class Point3 : gtsam::Value {
// Standard Constructors
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
gtsam::Point3 inverse() const;
gtsam::Point3 compose(const gtsam::Point3& p2) const;
gtsam::Point3 between(const gtsam::Point3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point3& p) const;
// Lie Group
static gtsam::Point3 Expmap(Vector v);
static Vector Logmap(const gtsam::Point3& p);
// Standard Interface
Vector vector() const;
double x() const;
double y() const;
double z() const;
// enabling serialization functionality
void serialize() const;
};
virtual class Rot2 : gtsam::Value {
// Standard Constructors and Named Constructors
Rot2();
Rot2(double theta);
static gtsam::Rot2 fromAngle(double theta);
static gtsam::Rot2 fromDegrees(double theta);
static gtsam::Rot2 fromCosSin(double c, double s);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Rot2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot2& p) const;
// Lie Group
static gtsam::Rot2 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot2& p);
// Group Action on Point2
gtsam::Point2 rotate(const gtsam::Point2& point) const;
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
// Standard Interface
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
static gtsam::Rot2 atan2(double y, double x);
double theta() const;
double degrees() const;
double c() const;
double s() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
virtual class Rot3 : gtsam::Value {
// Standard Constructors and Named Constructors
Rot3();
Rot3(Matrix R);
static gtsam::Rot3 Rx(double t);
static gtsam::Rot3 Ry(double t);
static gtsam::Rot3 Rz(double t);
static gtsam::Rot3 RzRyRx(double x, double y, double z);
static gtsam::Rot3 RzRyRx(Vector xyz);
static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading)
static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft)
static gtsam::Rot3 ypr(double y, double p, double r);
static gtsam::Rot3 quaternion(double w, double x, double y, double z);
static gtsam::Rot3 rodriguez(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
//gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
gtsam::Rot3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot3& p) const;
// Group Action on Point3
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);
Matrix matrix() const;
Matrix transpose() const;
gtsam::Point3 column(size_t index) const;
Vector xyz() const;
Vector ypr() const;
Vector rpy() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
Vector quaternion() const;
// enabling serialization functionality
void serialize() const;
};
virtual class Pose2 : gtsam::Value {
// Standard Constructor
Pose2();
Pose2(const gtsam::Pose2& pose);
Pose2(double x, double y, double theta);
Pose2(double theta, const gtsam::Point2& t);
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
Pose2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose2& p) const;
// Lie Group
static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p);
Matrix AdjointMap() const;
Vector Adjoint(const Vector& xi) const;
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
gtsam::Point2 transform_from(const gtsam::Point2& p) const;
gtsam::Point2 transform_to(const gtsam::Point2& p) const;
// Standard Interface
double x() const;
double y() const;
double theta() const;
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
double range(const gtsam::Point2& point) const;
gtsam::Point2 translation() const;
gtsam::Rot2 rotation() const;
Matrix matrix() const;
// enabling serialization functionality
void serialize() const;
};
virtual class Pose3 : gtsam::Value {
// Standard Constructors
Pose3();
Pose3(const gtsam::Pose3& pose);
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
Pose3(Matrix t);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose3 retract(Vector v) const;
gtsam::Pose3 retractFirstOrder(Vector v) const;
Vector localCoordinates(const gtsam::Pose3& T2) const;
// Lie Group
static gtsam::Pose3 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose3& p);
Matrix AdjointMap() const;
Vector Adjoint(Vector xi) const;
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
// Group Action on Point3
gtsam::Point3 transform_from(const gtsam::Point3& p) const;
gtsam::Point3 transform_to(const gtsam::Point3& p) const;
// Standard Interface
gtsam::Rot3 rotation() const;
gtsam::Point3 translation() const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to()
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& pose);
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Sphere2.h>
virtual class Sphere2 : gtsam::Value {
// Standard Constructors
Sphere2();
Sphere2(const gtsam::Point3& pose);
// Testable
void print(string s) const;
bool equals(const gtsam::Sphere2& pose, double tol) const;
// Other functionality
Matrix basis() const;
Matrix skew() const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Sphere2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Sphere2& s) const;
};
#include <gtsam/geometry/EssentialMatrix.h>
virtual class EssentialMatrix : gtsam::Value {
// Standard Constructors
EssentialMatrix(const gtsam::Rot3& aRb, const gtsam::Sphere2& aTb);
// Testable
void print(string s) const;
bool equals(const gtsam::EssentialMatrix& pose, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::EssentialMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::EssentialMatrix& s) const;
// Other methods:
gtsam::Rot3 rotation() const;
gtsam::Sphere2 direction() const;
Matrix matrix() const;
double error(Vector vA, Vector vB);
};
virtual class Cal3_S2 : gtsam::Value {
// Standard Constructors
Cal3_S2();
Cal3_S2(double fx, double fy, double s, double u0, double v0);
Cal3_S2(Vector v);
Cal3_S2(double fov, int w, int h);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3_S2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3_S2& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
Vector vector() const;
Matrix matrix() const;
Matrix matrix_inverse() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/geometry/Cal3DS2.h>
virtual class Cal3DS2 : gtsam::Value {
// Standard Constructors
Cal3DS2();
Cal3DS2(double fx, double fy, double s, double u0, double v0, double k1, double k2, double k3, double k4);
Cal3DS2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3DS2& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3DS2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3DS2& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p, double tol) const;
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// TODO: D2d functions that start with an uppercase letter
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
Vector vector() const;
Vector k() const;
//Matrix K() const; //FIXME: Uppercase
// enabling serialization functionality
void serialize() const;
};
class Cal3_S2Stereo {
// Standard Constructors
Cal3_S2Stereo();
Cal3_S2Stereo(double fx, double fy, double s, double u0, double v0, double b);
Cal3_S2Stereo(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2Stereo& K, double tol) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
double baseline() const;
};
virtual class CalibratedCamera : gtsam::Value {
// Standard Constructors and Named Constructors
CalibratedCamera();
CalibratedCamera(const gtsam::Pose3& pose);
CalibratedCamera(const Vector& v);
static gtsam::CalibratedCamera Level(const gtsam::Pose2& pose2, double height);
// Testable
void print(string s) const;
bool equals(const gtsam::CalibratedCamera& camera, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::CalibratedCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::CalibratedCamera& T2) const;
// Group
gtsam::CalibratedCamera compose(const gtsam::CalibratedCamera& c) const;
gtsam::CalibratedCamera inverse() const;
// Action on Point3
gtsam::Point2 project(const gtsam::Point3& point) const;
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
// Standard Interface
gtsam::Pose3 pose() const;
double range(const gtsam::Point3& p) const; // TODO: Other overloaded range methods
// enabling serialization functionality
void serialize() const;
};
virtual class SimpleCamera : gtsam::Value {
// Standard Constructors and Named Constructors
SimpleCamera();
SimpleCamera(const gtsam::Pose3& pose);
SimpleCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2& K);
static gtsam::SimpleCamera Level(const gtsam::Cal3_S2& K,
const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Level(const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye,
const gtsam::Point3& target, const gtsam::Point3& upVector,
const gtsam::Cal3_S2& K);
// Testable
void print(string s) const;
bool equals(const gtsam::SimpleCamera& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
gtsam::Cal3_S2 calibration();
// Manifold
gtsam::SimpleCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::SimpleCamera& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& point);
// enabling serialization functionality
void serialize() const;
};
template<CALIBRATION = {gtsam::Cal3DS2}>
virtual class PinholeCamera : gtsam::Value {
// Standard Constructors and Named Constructors
PinholeCamera();
PinholeCamera(const gtsam::Pose3& pose);
PinholeCamera(const gtsam::Pose3& pose, const gtsam::Cal3DS2& K);
static This Level(const gtsam::Cal3DS2& K,
const gtsam::Pose2& pose, double height);
static This Level(const gtsam::Pose2& pose, double height);
static This Lookat(const gtsam::Point3& eye,
const gtsam::Point3& target, const gtsam::Point3& upVector,
const gtsam::Cal3DS2& K);
// Testable
void print(string s) const;
bool equals(const This& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
CALIBRATION calibration() const;
// Manifold
This retract(const Vector& d) const;
Vector localCoordinates(const This& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& point);
// enabling serialization functionality
void serialize() const;
};
virtual class StereoCamera : gtsam::Value {
// Standard Constructors and Named Constructors
StereoCamera();
StereoCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2Stereo* K);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoCamera& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
double baseline() const;
gtsam::Cal3_S2Stereo* calibration() const;
// Manifold
gtsam::StereoCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::StereoCamera& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
gtsam::StereoPoint2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::StereoPoint2& p) const;
// enabling serialization functionality
void serialize() const;
};
//*************************************************************************
// inference
//*************************************************************************
#include <gtsam/inference/Permutation.h>
class Permutation {
// Standard Constructors and Named Constructors
Permutation();
Permutation(size_t nVars);
static gtsam::Permutation Identity(size_t nVars);
// Testable
void print(string s) const;
bool equals(const gtsam::Permutation& rhs, double tol) const;
// Standard interface
size_t at(size_t variable) const;
size_t size() const;
bool empty() const;
void resize(size_t newSize);
gtsam::Permutation* permute(const gtsam::Permutation& permutation) const;
gtsam::Permutation* inverse() const;
// FIXME: Cannot currently wrap std::vector
//static gtsam::Permutation PullToFront(const vector<size_t>& toFront, size_t size, bool filterDuplicates);
//static gtsam::Permutation PushToBack(const vector<size_t>& toBack, size_t size, bool filterDuplicates = false);
};
class IndexFactor {
// Standard Constructors and Named Constructors
IndexFactor(const gtsam::IndexFactor& f);
IndexFactor(const gtsam::IndexConditional& c);
IndexFactor();
IndexFactor(size_t j);
IndexFactor(size_t j1, size_t j2);
IndexFactor(size_t j1, size_t j2, size_t j3);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5, size_t j6);
// FIXME: Must wrap std::set<Index> for this to work
//IndexFactor(const std::set<Index>& js);
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
// From Factor
size_t size() const;
void print(string s) const;
bool equals(const gtsam::IndexFactor& other, double tol) const;
// FIXME: Need to wrap std::vector<KeyType>
//std::vector<KeyType>& keys();
};
class IndexConditional {
// Standard Constructors and Named Constructors
IndexConditional();
IndexConditional(size_t key);
IndexConditional(size_t key, size_t parent);
IndexConditional(size_t key, size_t parent1, size_t parent2);
IndexConditional(size_t key, size_t parent1, size_t parent2, size_t parent3);
// FIXME: Must wrap std::vector<KeyType> for this to work
//IndexFactor(size_t key, const std::vector<KeyType>& parents);
//IndexConditional(const std::vector<Index>& keys, size_t nrFrontals);
//template<class KEYS> static shared_ptr FromKeys(const KEYS& keys, size_t nrFrontals);
// Testable
void print(string s) const;
bool equals(const gtsam::IndexConditional& other, double tol) const;
// Standard interface
size_t nrFrontals() const;
size_t nrParents() const;
gtsam::IndexFactor* toFactor() const;
//Advanced interface
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
};
#include <gtsam/inference/BayesNet.h>
template<CONDITIONAL>
virtual class BayesNet {
// Testable
void print(string s) const;
bool equals(const This& other, double tol) const;
// Standard interface
size_t size() const;
void printStats(string s) const;
void saveGraph(string s) const;
CONDITIONAL* front() const;
CONDITIONAL* back() const;
void push_back(CONDITIONAL* conditional);
void push_front(CONDITIONAL* conditional);
void push_back(This& conditional);
void push_front(This& conditional);
void pop_front();
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
};
#include <gtsam/inference/BayesTree.h>
template<CONDITIONAL, CLIQUE>
virtual class BayesTree {
//Constructors
BayesTree();
// Testable
void print(string s);
bool equals(const This& other, double tol) const;
//Standard Interface
//size_t findParentClique(const gtsam::IndexVector& parents) const;
size_t size();
size_t nrNodes() const;
void saveGraph(string s) const;
CLIQUE* root() const;
void clear();
void deleteCachedShortcuts();
void insert(const CLIQUE* subtree);
size_t numCachedSeparatorMarginals() const;
CLIQUE* clique(size_t j) const;
};
template<CONDITIONAL>
virtual class BayesTreeClique {
BayesTreeClique();
BayesTreeClique(CONDITIONAL* conditional);
// BayesTreeClique(const std::pair<typename ConditionalType::shared_ptr, typename ConditionalType::FactorType::shared_ptr>& result) : Base(result) {}
bool equals(const This& other, double tol) const;
void print(string s) const;
void printTree() const; // Default indent of ""
void printTree(string indent) const;
size_t numCachedSeparatorMarginals() const;
CONDITIONAL* conditional() const;
bool isRoot() const;
size_t treeSize() const;
// const std::list<derived_ptr>& children() const { return children_; }
// derived_ptr parent() const { return parent_.lock(); }
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
// FIXME: need wrapped versions graphs, BayesNet
// BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const;
// FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const;
// FactorGraph<FactorType> joint(derived_ptr C2, derived_ptr root, Eliminate function) const;
void deleteCachedShortcuts();
};
#include <gtsam/inference/SymbolicFactorGraph.h>
typedef gtsam::BayesNet<gtsam::IndexConditional> SymbolicBayesNetBase;
virtual class SymbolicBayesNet : gtsam::SymbolicBayesNetBase {
// Standard Constructors and Named Constructors
SymbolicBayesNet();
SymbolicBayesNet(const gtsam::SymbolicBayesNet& bn);
SymbolicBayesNet(const gtsam::IndexConditional* conditional);
// Standard interface
//TODO:Throws parse error
//void push_back(const gtsam::SymbolicBayesNet bn);
//TODO:Throws parse error
//void push_front(const gtsam::SymbolicBayesNet bn);
//Advanced Interface
void pop_front();
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
};
typedef gtsam::BayesTreeClique<gtsam::IndexConditional> SymbolicBayesTreeClique;
typedef gtsam::BayesTree<gtsam::IndexConditional, gtsam::SymbolicBayesTreeClique> SymbolicBayesTreeBase;
virtual class SymbolicBayesTree : gtsam::SymbolicBayesTreeBase {
// Standard Constructors and Named Constructors
SymbolicBayesTree();
SymbolicBayesTree(const gtsam::SymbolicBayesNet& bn);
SymbolicBayesTree(const gtsam::SymbolicBayesTree& other);
// FIXME: wrap needs to understand std::list
//SymbolicBayesTree(const gtsam::SymbolicBayesNet& bayesNet, std::list<gtsam::SymbolicBayesTree> subtrees);
// Standard interface
size_t findParentClique(const gtsam::IndexConditional& parents) const;
// TODO: There are many other BayesTree member functions which might be of use
};
class SymbolicFactorGraph {
// Standard Constructors and Named Constructors
SymbolicFactorGraph();
SymbolicFactorGraph(const gtsam::SymbolicBayesNet& bayesNet);
SymbolicFactorGraph(const gtsam::SymbolicBayesTree& bayesTree);
// From FactorGraph
void push_back(gtsam::IndexFactor* factor);
void print(string s) const;
bool equals(const gtsam::SymbolicFactorGraph& rhs, double tol) const;
size_t size() const;
bool exists(size_t i) const;
// Standard interface
// FIXME: Must wrap FastSet<Index> for this to work
//FastSet<Index> keys() const;
//Advanced Interface
void push_factor(size_t key);
void push_factor(size_t key1, size_t key2);
void push_factor(size_t key1, size_t key2, size_t key3);
void push_factor(size_t key1, size_t key2, size_t key3, size_t key4);
pair<gtsam::IndexConditional*, gtsam::SymbolicFactorGraph> eliminateFrontals(size_t nFrontals) const;
pair<gtsam::IndexConditional*, gtsam::SymbolicFactorGraph> eliminateOne(size_t j);
};
#include <gtsam/inference/SymbolicSequentialSolver.h>
class SymbolicSequentialSolver {
// Standard Constructors and Named Constructors
SymbolicSequentialSolver(const gtsam::SymbolicFactorGraph& factorGraph);
SymbolicSequentialSolver(const gtsam::SymbolicFactorGraph* factorGraph, const gtsam::VariableIndex* variableIndex);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicSequentialSolver& rhs, double tol) const;
// Standard interface
gtsam::SymbolicBayesNet* eliminate() const;
gtsam::IndexFactor* marginalFactor(size_t j) const;
};
#include <gtsam/inference/SymbolicMultifrontalSolver.h>
class SymbolicMultifrontalSolver {
// Standard Constructors and Named Constructors
SymbolicMultifrontalSolver(const gtsam::SymbolicFactorGraph& factorGraph);
SymbolicMultifrontalSolver(const gtsam::SymbolicFactorGraph* factorGraph, const gtsam::VariableIndex* variableIndex);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicMultifrontalSolver& rhs, double tol) const;
// Standard interface
gtsam::SymbolicBayesTree* eliminate() const;
gtsam::IndexFactor* marginalFactor(size_t j) const;
};
#include <gtsam/inference/SymbolicFactorGraph.h>
class VariableIndex {
// Standard Constructors and Named Constructors
VariableIndex();
// TODO: Templetize constructor when wrap supports it
//template<T = {gtsam::FactorGraph}>
//VariableIndex(const T& factorGraph, size_t nVariables);
//VariableIndex(const T& factorGraph);
VariableIndex(const gtsam::SymbolicFactorGraph& factorGraph);
VariableIndex(const gtsam::SymbolicFactorGraph& factorGraph, size_t nVariables);
VariableIndex(const gtsam::GaussianFactorGraph& factorGraph);
VariableIndex(const gtsam::GaussianFactorGraph& factorGraph, size_t nVariables);
VariableIndex(const gtsam::NonlinearFactorGraph& factorGraph);
VariableIndex(const gtsam::NonlinearFactorGraph& factorGraph, size_t nVariables);
VariableIndex(const gtsam::VariableIndex& other);
// Testable
bool equals(const gtsam::VariableIndex& other, double tol) const;
void print(string s) const;
// Standard interface
size_t size() const;
size_t nFactors() const;
size_t nEntries() const;
void permuteInPlace(const gtsam::Permutation& permutation);
};
//*************************************************************************
// linear
//*************************************************************************
namespace noiseModel {
#include <gtsam/linear/NoiseModel.h>
virtual class Base {
};
virtual class Gaussian : gtsam::noiseModel::Base {
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
Matrix R() const;
bool equals(gtsam::noiseModel::Base& expected, double tol);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Diagonal : gtsam::noiseModel::Gaussian {
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas);
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
Matrix R() const;
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Constrained : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Constrained* MixedSigmas(const Vector& mu, const Vector& sigmas);
static gtsam::noiseModel::Constrained* MixedSigmas(double m, const Vector& sigmas);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& mu, const Vector& variances);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& variances);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& mu, const Vector& precisions);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& precisions);
static gtsam::noiseModel::Constrained* All(size_t dim);
static gtsam::noiseModel::Constrained* All(size_t dim, double mu);
gtsam::noiseModel::Constrained* unit() const;
// enabling serialization functionality
void serializable() const;
};
virtual class Isotropic : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
virtual class Unit : gtsam::noiseModel::Isotropic {
static gtsam::noiseModel::Unit* Create(size_t dim);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
namespace mEstimator {
virtual class Base {
};
virtual class Null: gtsam::noiseModel::mEstimator::Base {
Null();
void print(string s) const;
static gtsam::noiseModel::mEstimator::Null* Create();
// enabling serialization functionality
void serializable() const;
};
virtual class Fair: gtsam::noiseModel::mEstimator::Base {
Fair(double c);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Fair* Create(double c);
// enabling serialization functionality
void serializable() const;
};
virtual class Huber: gtsam::noiseModel::mEstimator::Base {
Huber(double k);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Huber* Create(double k);
// enabling serialization functionality
void serializable() const;
};
virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
Tukey(double k);
void print(string s) const;
static gtsam::noiseModel::mEstimator::Tukey* Create(double k);
// enabling serialization functionality
void serializable() const;
};
}///\namespace mEstimator
virtual class Robust : gtsam::noiseModel::Base {
Robust(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
static gtsam::noiseModel::Robust* Create(const gtsam::noiseModel::mEstimator::Base* robust, const gtsam::noiseModel::Base* noise);
void print(string s) const;
// enabling serialization functionality
void serializable() const;
};
}///\namespace noiseModel
#include <gtsam/linear/Sampler.h>
class Sampler {
//Constructors
Sampler(gtsam::noiseModel::Diagonal* model, int seed);
Sampler(Vector sigmas, int seed);
Sampler(int seed);
//Standard Interface
size_t dim() const;
Vector sigmas() const;
gtsam::noiseModel::Diagonal* model() const;
Vector sample();
Vector sampleNewModel(gtsam::noiseModel::Diagonal* model);
};
class VectorValues {
//Constructors
VectorValues();
VectorValues(const gtsam::VectorValues& other);
VectorValues(size_t nVars, size_t varDim);
//Named Constructors
static gtsam::VectorValues Zero(const gtsam::VectorValues& model);
static gtsam::VectorValues Zero(size_t nVars, size_t varDim);
static gtsam::VectorValues SameStructure(const gtsam::VectorValues& other);
//Standard Interface
size_t size() const;
size_t dim(size_t j) const;
bool exists(size_t j) const;
void print(string s) const;
bool equals(const gtsam::VectorValues& expected, double tol) const;
void insert(size_t j, Vector value);
Vector asVector() const;
Vector at(size_t j) const;
//Advanced Interface
void resizeLike(const gtsam::VectorValues& other);
void resize(size_t nVars, size_t varDim);
void setZero();
gtsam::VectorValues add(const gtsam::VectorValues& c) const;
gtsam::VectorValues scale(double a, const gtsam::VectorValues& c) const;
//FIXME: Parse errors with vector()
//const Vector& vector() const;
//Vector& vector();
bool hasSameStructure(const gtsam::VectorValues& other) const;
double dot(const gtsam::VectorValues& V) const;
double norm() const;
// enabling serialization functionality
void serialize() const;
};
class GaussianConditional {
//Constructors
GaussianConditional(size_t key, Vector d, Matrix R, Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
size_t name2, Matrix T, Vector sigmas);
//Standard Interface
void print(string s) const;
bool equals(const gtsam::GaussianConditional &cg, double tol) const;
size_t dim() const;
//Advanced Interface
Matrix information() const;
Matrix augmentedInformation() const;
gtsam::JacobianFactor* toFactor() const;
void solveInPlace(gtsam::VectorValues& x) const;
void solveTransposeInPlace(gtsam::VectorValues& gy) const;
void scaleFrontalsBySigma(gtsam::VectorValues& gy) const;
// enabling serialization functionality
void serialize() const;
};
class GaussianDensity {
//Constructors
GaussianDensity(size_t key, Vector d, Matrix R, Vector sigmas);
//Standard Interface
void print(string s) const;
Vector mean() const;
Matrix information() const;
Matrix covariance() const;
};
typedef gtsam::BayesNet<gtsam::GaussianConditional> GaussianBayesNetBase;
virtual class GaussianBayesNet : gtsam::GaussianBayesNetBase {
//Constructors
GaussianBayesNet();
GaussianBayesNet(const gtsam::GaussianConditional* conditional);
};
//Non-Class methods found in GaussianBayesNet.h
//FIXME: No MATLAB documentation for these functions!
//gtsam::GaussianBayesNet scalarGaussian(size_t key, double mu, double sigma);
//gtsam::GaussianBayesNet simpleGaussian(size_t key, const Vector& mu, double sigma);
//void push_front(gtsam::GaussianBayesNet& bn, size_t key, Vector d, Matrix R, size_t name1, Matrix S, Vector sigmas);
//void push_front(gtsam::GaussianBayesNet& bn, size_t key, Vector d, Matrix R, size_t name1, Matrix S, size_t name2, Matrix T, Vector sigmas);
//gtsam::VectorValues* allocateVectorValues(const gtsam::GaussianBayesNet& bn);
//gtsam::VectorValues optimize(const gtsam::GaussianBayesNet& bn);
//void optimizeInPlace(const gtsam::GaussianBayesNet& bn, gtsam::VectorValues& x);
//gtsam::VectorValues optimizeGradientSearch(const gtsam::GaussianBayesNet& bn);
//void optimizeGradientSearchInPlace(const gtsam::GaussianBayesNet& bn, gtsam::VectorValues& grad);
//gtsam::VectorValues backSubstitute(const gtsam::GaussianBayesNet& bn, const gtsam::VectorValues& gx);
//gtsam::VectorValues backSubstituteTranspose(const gtsam::GaussianBayesNet& bn, const gtsam::VectorValues& gx);
//pair<Matrix, Vector> matrix(const gtsam::GaussianBayesNet& bn);
double determinant(const gtsam::GaussianBayesNet& bayesNet);
//gtsam::VectorValues gradient(const gtsam::GaussianBayesNet& bayesNet, const gtsam::VectorValues& x0);
//void gradientAtZero(const gtsam::GaussianBayesNet& bayesNet, const gtsam::VectorValues& g);
#include <gtsam/linear/GaussianBayesTree.h>
typedef gtsam::BayesTreeClique<gtsam::GaussianConditional> GaussianBayesTreeClique;
typedef gtsam::BayesTree<gtsam::GaussianConditional, gtsam::GaussianBayesTreeClique> GaussianBayesTreeBase;
virtual class GaussianBayesTree : gtsam::GaussianBayesTreeBase {
// Standard Constructors and Named Constructors
GaussianBayesTree();
GaussianBayesTree(const gtsam::GaussianBayesNet& bn);
GaussianBayesTree(const gtsam::GaussianBayesNet& other);
bool equals(const gtsam::GaussianBayesTree& other, double tol) const;
void print(string s);
size_t size() const;
size_t nrNodes() const;
bool empty() const;
gtsam::GaussianBayesTreeClique* root() const;
gtsam::GaussianBayesTreeClique* clique(size_t j) const;
size_t numCachedSeparatorMarginals() const;
void saveGraph(string s) const;
};
// namespace functions for GaussianBayesTree
gtsam::VectorValues optimize(const gtsam::GaussianBayesTree& bayesTree);
gtsam::VectorValues optimizeGradientSearch(const gtsam::GaussianBayesTree& bayesTree);
gtsam::VectorValues gradient(const gtsam::GaussianBayesTree& bayesTree, const gtsam::VectorValues& x0);
gtsam::VectorValues* allocateVectorValues(const gtsam::GaussianBayesTree& bt);
double determinant(const gtsam::GaussianBayesTree& bayesTree);
virtual class GaussianFactor {
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianFactor* negate() const;
Matrix augmentedInformation() const;
Matrix information() const;
size_t size() const;
};
virtual class JacobianFactor : gtsam::GaussianFactor {
//Constructors
JacobianFactor();
JacobianFactor(Vector b_in);
JacobianFactor(size_t i1, Matrix A1, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3,
Vector b, const gtsam::noiseModel::Diagonal* model);
JacobianFactor(const gtsam::GaussianFactor& factor);
//Testable
void print(string s) const;
void printKeys(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
size_t size() const;
Vector unweighted_error(const gtsam::VectorValues& c) const;
Vector error_vector(const gtsam::VectorValues& c) const;
double error(const gtsam::VectorValues& c) const;
//Standard Interface
bool empty() const;
Matrix getA() const;
Vector getb() const;
size_t rows() const;
size_t cols() const;
size_t numberOfRows() const;
bool isConstrained() const;
pair<Matrix, Vector> matrix() const;
Matrix matrix_augmented() const;
gtsam::GaussianConditional* eliminateFirst();
gtsam::GaussianConditional* eliminate(size_t nrFrontals);
gtsam::GaussianFactor* negate() const;
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const;
gtsam::JacobianFactor whiten() const;
gtsam::GaussianConditional* eliminateFirst();
gtsam::GaussianConditional* eliminate(size_t nFrontals);
gtsam::GaussianConditional* splitConditional(size_t nFrontals);
void setModel(bool anyConstrained, const Vector& sigmas);
void assertInvariants() const;
//gtsam::SharedDiagonal& get_model();
// enabling serialization functionality
void serialize() const;
};
virtual class HessianFactor : gtsam::GaussianFactor {
//Constructors
HessianFactor(const gtsam::HessianFactor& gf);
HessianFactor();
HessianFactor(size_t j, Matrix G, Vector g, double f);
HessianFactor(size_t j, Vector mu, Matrix Sigma);
HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22,
Vector g2, double f);
HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13,
Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3,
double f);
HessianFactor(const gtsam::GaussianConditional& cg);
HessianFactor(const gtsam::GaussianFactor& factor);
//Testable
size_t size() const;
void print(string s) const;
void printKeys(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
//Standard Interface
size_t rows() const;
Matrix info() const;
double constantTerm() const;
Vector linearTerm() const;
//Advanced Interface
void partialCholesky(size_t nrFrontals);
gtsam::GaussianConditional* splitEliminatedFactor(size_t nrFrontals);
void assertInvariants() const;
// enabling serialization functionality
void serialize() const;
};
class GaussianFactorGraph {
GaussianFactorGraph();
GaussianFactorGraph(const gtsam::GaussianBayesNet& CBN);
// From FactorGraph
void print(string s) const;
bool equals(const gtsam::GaussianFactorGraph& lfgraph, double tol) const;
size_t size() const;
gtsam::GaussianFactor* at(size_t idx) const;
bool exists(size_t idx) const;
// Inference
pair<gtsam::GaussianConditional*, gtsam::GaussianFactorGraph> eliminateFrontals(size_t nFrontals) const;
pair<gtsam::GaussianConditional*, gtsam::GaussianFactorGraph> eliminateOne(size_t j) const;
// Building the graph
void push_back(gtsam::GaussianFactor* factor);
void add(const gtsam::GaussianFactor& factor);
void add(Vector b);
void add(size_t key1, Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model);
void add(size_t key1, Matrix A1, size_t key2, Matrix A2, Vector b,
const gtsam::noiseModel::Diagonal* model);
void add(size_t key1, Matrix A1, size_t key2, Matrix A2, size_t key3, Matrix A3,
Vector b, const gtsam::noiseModel::Diagonal* model);
//Permutations
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
// error and probability
double error(const gtsam::VectorValues& c) const;
double probPrime(const gtsam::VectorValues& c) const;
// combining
static gtsam::GaussianFactorGraph combine2(
const gtsam::GaussianFactorGraph& lfg1,
const gtsam::GaussianFactorGraph& lfg2);
void combine(const gtsam::GaussianFactorGraph& lfg);
// Conversion to matrices
Matrix sparseJacobian_() const;
Matrix augmentedJacobian() const;
pair<Matrix,Vector> jacobian() const;
Matrix augmentedHessian() const;
pair<Matrix,Vector> hessian() const;
// enabling serialization functionality
void serialize() const;
};
//Non-Class functions in GaussianFactorGraph.h
/*void multiplyInPlace(const gtsam::GaussianFactorGraph& fg, const gtsam::VectorValues& x, gtsam::Errors& e);
gtsam::VectorValues gradient(const gtsam::GaussianFactorGraph& fg, const gtsam::VectorValues& x0);
void gradientAtZero(const gtsam::GaussianFactorGraph& fg, gtsam::VectorValues& g);
void residual(const gtsam::GaussianFactorGraph& fg, const gtsam::VectorValues& x, gtsam::VectorValues& r);
void multiply(const gtsam::GaussianFactorGraph& fg, const gtsam::VectorValues& x, gtsam::VectorValues& r);
void transposeMultiply(const gtsam::GaussianFactorGraph& fg, const gtsam::VectorValues& x, gtsam::VectorValues& r);*/
class Errors {
//Constructors
Errors();
Errors(const gtsam::VectorValues& V);
//Testable
void print(string s);
bool equals(const gtsam::Errors& expected, double tol) const;
};
//Non-Class functions for Errors
//double dot(const gtsam::Errors& A, const gtsam::Errors& b);
virtual class GaussianISAM : gtsam::GaussianBayesTree {
//Constructor
GaussianISAM();
//Standard Interface
void saveGraph(string s) const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const;
Matrix marginalCovariance(size_t key) const;
gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const;
void clear();
};
#include <gtsam/linear/GaussianSequentialSolver.h>
class GaussianSequentialSolver {
//Constructors
GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph,
bool useQR);
//Standard Interface
void replaceFactors(const gtsam::GaussianFactorGraph* factorGraph);
gtsam::GaussianBayesNet* eliminate() const;
gtsam::VectorValues* optimize() const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
Matrix marginalCovariance(size_t j) const;
};
#include <gtsam/linear/GaussianMultifrontalSolver.h>
class GaussianMultifrontalSolver {
//Constructors
GaussianMultifrontalSolver(const gtsam::GaussianFactorGraph& graph,
bool useQR);
//Standard Interface
void replaceFactors(const gtsam::GaussianFactorGraph* factorGraph);
gtsam::GaussianBayesTree* eliminate() const;
gtsam::VectorValues* optimize() const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
Matrix marginalCovariance(size_t j) const;
};
#include <gtsam/linear/IterativeSolver.h>
virtual class IterativeOptimizationParameters {
string getKernel() const ;
string getVerbosity() const;
void setKernel(string s) ;
void setVerbosity(string s) ;
void print() const;
};
//virtual class IterativeSolver {
// IterativeSolver();
// gtsam::VectorValues optimize ();
//};
#include <gtsam/linear/ConjugateGradientSolver.h>
virtual class ConjugateGradientParameters : gtsam::IterativeOptimizationParameters {
ConjugateGradientParameters();
size_t getMinIterations() const ;
size_t getMaxIterations() const ;
size_t getReset() const;
double getEpsilon_rel() const;
double getEpsilon_abs() const;
void setMinIterations(size_t value);
void setMaxIterations(size_t value);
void setReset(size_t value);
void setEpsilon_rel(double value);
void setEpsilon_abs(double value);
void print();
};
#include <gtsam/linear/SubgraphSolver.h>
virtual class SubgraphSolverParameters : gtsam::ConjugateGradientParameters {
SubgraphSolverParameters();
void print() const;
};
class SubgraphSolver {
SubgraphSolver(const gtsam::GaussianFactorGraph &A, const gtsam::SubgraphSolverParameters &parameters);
SubgraphSolver(const gtsam::GaussianFactorGraph &Ab1, const gtsam::GaussianFactorGraph &Ab2, const gtsam::SubgraphSolverParameters &parameters);
gtsam::VectorValues optimize() const;
};
#include <gtsam/linear/KalmanFilter.h>
class KalmanFilter {
KalmanFilter(size_t n);
// gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0);
gtsam::GaussianDensity* init(Vector x0, Matrix P0);
void print(string s) const;
static size_t step(gtsam::GaussianDensity* p);
gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, const gtsam::noiseModel::Diagonal* modelQ);
gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, Matrix Q);
gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0,
Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model);
gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H,
Vector z, const gtsam::noiseModel::Diagonal* model);
gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H,
Vector z, Matrix Q);
};
//*************************************************************************
// nonlinear
//*************************************************************************
#include <gtsam/nonlinear/Symbol.h>
size_t symbol(char chr, size_t index);
char symbolChr(size_t key);
size_t symbolIndex(size_t key);
// Default keyformatter
void printKeySet(const gtsam::KeySet& keys);
void printKeySet(const gtsam::KeySet& keys, string s);
#include <gtsam/nonlinear/LabeledSymbol.h>
class LabeledSymbol {
LabeledSymbol(size_t full_key);
LabeledSymbol(const gtsam::LabeledSymbol& key);
LabeledSymbol(unsigned char valType, unsigned char label, size_t j);
size_t key() const;
unsigned char label() const;
unsigned char chr() const;
size_t index() const;
gtsam::LabeledSymbol upper() const;
gtsam::LabeledSymbol lower() const;
void print(string s) const;
};
size_t mrsymbol(unsigned char c, unsigned char label, size_t j);
unsigned char mrsymbolChr(size_t key);
unsigned char mrsymbolLabel(size_t key);
size_t mrsymbolIndex(size_t key);
#include <gtsam/nonlinear/Ordering.h>
class Ordering {
// Standard Constructors and Named Constructors
Ordering();
// Testable
void print(string s) const;
bool equals(const gtsam::Ordering& ord, double tol) const;
// Standard interface
size_t size() const;
size_t at(size_t key) const;
size_t key(size_t index) const;
bool exists(size_t key) const;
void insert(size_t key, size_t order);
void push_back(size_t key);
void permuteInPlace(const gtsam::Permutation& permutation);
void permuteInPlace(const gtsam::Permutation& selector, const gtsam::Permutation& permutation);
// enabling serialization functionality
void serialize() const;
};
class NonlinearFactorGraph {
NonlinearFactorGraph();
NonlinearFactorGraph(const gtsam::NonlinearFactorGraph& graph);
// FactorGraph
void print(string s) const;
bool equals(const gtsam::NonlinearFactorGraph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t idx) const;
bool exists(size_t idx) const;
void push_back(const gtsam::NonlinearFactorGraph& factors);
// NonlinearFactorGraph
double error(const gtsam::Values& values) const;
double probPrime(const gtsam::Values& values) const;
void add(const gtsam::NonlinearFactor* factor);
gtsam::Ordering* orderingCOLAMD(const gtsam::Values& values) const;
// Ordering* orderingCOLAMDConstrained(const gtsam::Values& c, const std::map<gtsam::Key,int>& constraints) const;
gtsam::GaussianFactorGraph* linearize(const gtsam::Values& values,
const gtsam::Ordering& ordering) const;
gtsam::SymbolicFactorGraph* symbolic(const gtsam::Ordering& ordering) const;
gtsam::NonlinearFactorGraph clone() const;
// enabling serialization functionality
void serialize() const;
};
virtual class NonlinearFactor {
// Factor base class
size_t size() const;
gtsam::KeyVector keys() const;
void print(string s) const;
void printKeys(string s) const;
// NonlinearFactor
void equals(const gtsam::NonlinearFactor& other, double tol) const;
double error(const gtsam::Values& c) const;
size_t dim() const;
bool active(const gtsam::Values& c) const;
gtsam::GaussianFactor* linearize(const gtsam::Values& c, const gtsam::Ordering& ordering) const;
gtsam::NonlinearFactor* clone() const;
// gtsam::NonlinearFactor* rekey(const gtsam::KeyVector& newKeys) const; //FIXME: Conversion from KeyVector to std::vector does not happen
};
virtual class NoiseModelFactor: gtsam::NonlinearFactor {
void equals(const gtsam::NoiseModelFactor& other, double tol) const;
gtsam::noiseModel::Base* get_noiseModel() const;
Vector unwhitenedError(const gtsam::Values& x) const;
Vector whitenedError(const gtsam::Values& x) const;
};
#include <gtsam/nonlinear/Values.h>
class Values {
Values();
Values(const gtsam::Values& other);
size_t size() const;
bool empty() const;
void clear();
size_t dim() const;
void print(string s) const;
bool equals(const gtsam::Values& other, double tol) const;
void insert(size_t j, const gtsam::Value& value);
void insert(const gtsam::Values& values);
void update(size_t j, const gtsam::Value& val);
void update(const gtsam::Values& values);
void erase(size_t j);
void swap(gtsam::Values& values);
bool exists(size_t j) const;
gtsam::Value at(size_t j) const;
gtsam::KeyList keys() const;
gtsam::VectorValues zeroVectors(const gtsam::Ordering& ordering) const;
gtsam::Ordering* orderingArbitrary(size_t firstVar) const;
gtsam::Values retract(const gtsam::VectorValues& delta, const gtsam::Ordering& ordering) const;
gtsam::VectorValues localCoordinates(const gtsam::Values& cp, const gtsam::Ordering& ordering) const;
void localCoordinates(const gtsam::Values& cp, const gtsam::Ordering& ordering, gtsam::VectorValues& delta) const;
// enabling serialization functionality
void serialize() const;
};
// Actually a FastList<Key>
#include <gtsam/nonlinear/Key.h>
class KeyList {
KeyList();
KeyList(const gtsam::KeyList& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
size_t front() const;
size_t back() const;
void push_back(size_t key);
void push_front(size_t key);
void pop_back();
void pop_front();
void sort();
void remove(size_t key);
};
// Actually a FastSet<Key>
#include <gtsam/nonlinear/Key.h>
class KeySet {
KeySet();
KeySet(const gtsam::KeySet& other);
KeySet(const gtsam::KeyVector& other);
KeySet(const gtsam::KeyList& other);
// Testable
void print(string s) const;
bool equals(const gtsam::KeySet& other) const;
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
void insert(size_t key);
bool erase(size_t key); // returns true if value was removed
bool count(size_t key) const; // returns true if value exists
};
// Actually a FastVector<Key>
#include <gtsam/nonlinear/Key.h>
class KeyVector {
KeyVector();
KeyVector(const gtsam::KeyVector& other);
KeyVector(const gtsam::KeySet& other);
KeyVector(const gtsam::KeyList& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
size_t at(size_t i) const;
size_t front() const;
size_t back() const;
void push_back(size_t key) const;
};
#include <gtsam/nonlinear/Marginals.h>
class Marginals {
Marginals(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& solution);
void print(string s) const;
Matrix marginalCovariance(size_t variable) const;
Matrix marginalInformation(size_t variable) const;
gtsam::JointMarginal jointMarginalCovariance(const gtsam::KeyVector& variables) const;
gtsam::JointMarginal jointMarginalInformation(const gtsam::KeyVector& variables) const;
};
class JointMarginal {
Matrix at(size_t iVariable, size_t jVariable) const;
Matrix fullMatrix() const;
void print(string s) const;
void print() const;
};
#include <gtsam/nonlinear/LinearContainerFactor.h>
virtual class LinearContainerFactor : gtsam::NonlinearFactor {
LinearContainerFactor(gtsam::GaussianFactor* factor, const gtsam::Ordering& ordering,
const gtsam::Values& linearizationPoint);
LinearContainerFactor(gtsam::GaussianFactor* factor, const gtsam::Values& linearizationPoint);
LinearContainerFactor(gtsam::GaussianFactor* factor, const gtsam::Ordering& ordering);
LinearContainerFactor(gtsam::GaussianFactor* factor);
gtsam::GaussianFactor* factor() const;
// const boost::optional<Values>& linearizationPoint() const;
gtsam::GaussianFactor* order(const gtsam::Ordering& ordering) const;
gtsam::GaussianFactor* negate(const gtsam::Ordering& ordering) const;
gtsam::NonlinearFactor* negate() const;
bool isJacobian() const;
gtsam::JacobianFactor* toJacobian() const;
gtsam::HessianFactor* toHessian() const;
static gtsam::NonlinearFactorGraph convertLinearGraph(const gtsam::GaussianFactorGraph& linear_graph,
const gtsam::Ordering& ordering, const gtsam::Values& linearizationPoint);
static gtsam::NonlinearFactorGraph convertLinearGraph(const gtsam::GaussianFactorGraph& linear_graph,
const gtsam::Ordering& ordering);
// enabling serialization functionality
void serializable() const;
}; // \class LinearContainerFactor
// Summarization functionality
#include <gtsam/nonlinear/summarization.h>
// Uses partial QR approach by default
pair<gtsam::GaussianFactorGraph,gtsam::Ordering> summarize(
const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values,
const gtsam::KeySet& saved_keys);
gtsam::NonlinearFactorGraph summarizeAsNonlinearContainer(
const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values,
const gtsam::KeySet& saved_keys);
//*************************************************************************
// Nonlinear optimizers
//*************************************************************************
#include <gtsam/nonlinear/NonlinearOptimizer.h>
virtual class NonlinearOptimizerParams {
NonlinearOptimizerParams();
void print(string s) const;
size_t getMaxIterations() const;
double getRelativeErrorTol() const;
double getAbsoluteErrorTol() const;
double getErrorTol() const;
string getVerbosity() const;
void setMaxIterations(size_t value);
void setRelativeErrorTol(double value);
void setAbsoluteErrorTol(double value);
void setErrorTol(double value);
void setVerbosity(string s);
};
#include <gtsam/nonlinear/SuccessiveLinearizationOptimizer.h>
virtual class SuccessiveLinearizationParams : gtsam::NonlinearOptimizerParams {
SuccessiveLinearizationParams();
string getLinearSolverType() const;
void setLinearSolverType(string solver);
void setOrdering(const gtsam::Ordering& ordering);
void setIterativeParams(const gtsam::SubgraphSolverParameters &params);
bool isMultifrontal() const;
bool isSequential() const;
bool isCholmod() const;
bool isCG() const;
};
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
virtual class GaussNewtonParams : gtsam::SuccessiveLinearizationParams {
GaussNewtonParams();
};
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
virtual class LevenbergMarquardtParams : gtsam::SuccessiveLinearizationParams {
LevenbergMarquardtParams();
double getlambdaInitial() const;
double getlambdaFactor() const;
double getlambdaUpperBound() const;
string getVerbosityLM() const;
void setlambdaInitial(double value);
void setlambdaFactor(double value);
void setlambdaUpperBound(double value);
void setVerbosityLM(string s);
};
#include <gtsam/nonlinear/DoglegOptimizer.h>
virtual class DoglegParams : gtsam::SuccessiveLinearizationParams {
DoglegParams();
double getDeltaInitial() const;
string getVerbosityDL() const;
void setDeltaInitial(double deltaInitial) const;
void setVerbosityDL(string verbosityDL) const;
};
virtual class NonlinearOptimizer {
gtsam::Values optimize();
gtsam::Values optimizeSafely();
double error() const;
int iterations() const;
gtsam::Values values() const;
void iterate() const;
};
virtual class GaussNewtonOptimizer : gtsam::NonlinearOptimizer {
GaussNewtonOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues);
GaussNewtonOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues, const gtsam::GaussNewtonParams& params);
};
virtual class DoglegOptimizer : gtsam::NonlinearOptimizer {
DoglegOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues);
DoglegOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues, const gtsam::DoglegParams& params);
double getDelta() const;
};
virtual class LevenbergMarquardtOptimizer : gtsam::NonlinearOptimizer {
LevenbergMarquardtOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues);
LevenbergMarquardtOptimizer(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialValues, const gtsam::LevenbergMarquardtParams& params);
double lambda() const;
void print(string str) const;
};
#include <gtsam/nonlinear/ISAM2.h>
class ISAM2GaussNewtonParams {
ISAM2GaussNewtonParams();
void print(string str) const;
/** Getters and Setters for all properties */
double getWildfireThreshold() const;
void setWildfireThreshold(double wildfireThreshold);
};
class ISAM2DoglegParams {
ISAM2DoglegParams();
void print(string str) const;
/** Getters and Setters for all properties */
double getWildfireThreshold() const;
void setWildfireThreshold(double wildfireThreshold);
double getInitialDelta() const;
void setInitialDelta(double initialDelta);
string getAdaptationMode() const;
void setAdaptationMode(string adaptationMode);
bool isVerbose() const;
void setVerbose(bool verbose);
};
class ISAM2ThresholdMapValue {
ISAM2ThresholdMapValue(char c, Vector thresholds);
ISAM2ThresholdMapValue(const gtsam::ISAM2ThresholdMapValue& other);
};
class ISAM2ThresholdMap {
ISAM2ThresholdMap();
ISAM2ThresholdMap(const gtsam::ISAM2ThresholdMap& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
void insert(const gtsam::ISAM2ThresholdMapValue& value) const;
};
class ISAM2Params {
ISAM2Params();
void print(string str) const;
/** Getters and Setters for all properties */
void setOptimizationParams(const gtsam::ISAM2GaussNewtonParams& params);
void setOptimizationParams(const gtsam::ISAM2DoglegParams& params);
void setRelinearizeThreshold(double relinearizeThreshold);
void setRelinearizeThreshold(const gtsam::ISAM2ThresholdMap& relinearizeThreshold);
int getRelinearizeSkip() const;
void setRelinearizeSkip(int relinearizeSkip);
bool isEnableRelinearization() const;
void setEnableRelinearization(bool enableRelinearization);
bool isEvaluateNonlinearError() const;
void setEvaluateNonlinearError(bool evaluateNonlinearError);
string getFactorization() const;
void setFactorization(string factorization);
bool isCacheLinearizedFactors() const;
void setCacheLinearizedFactors(bool cacheLinearizedFactors);
bool isEnableDetailedResults() const;
void setEnableDetailedResults(bool enableDetailedResults);
bool isEnablePartialRelinearizationCheck() const;
void setEnablePartialRelinearizationCheck(bool enablePartialRelinearizationCheck);
};
virtual class ISAM2Clique {
//Constructors
ISAM2Clique(const gtsam::GaussianConditional* conditional);
//Standard Interface
Vector gradientContribution() const;
gtsam::ISAM2Clique* clone() const;
void print(string s);
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
};
class ISAM2Result {
ISAM2Result();
void print(string str) const;
/** Getters and Setters for all properties */
size_t getVariablesRelinearized() const;
size_t getVariablesReeliminated() const;
size_t getCliques() const;
};
typedef gtsam::BayesTree<gtsam::GaussianConditional, gtsam::ISAM2Clique> ISAM2BayesTree;
virtual class ISAM2 : gtsam::ISAM2BayesTree {
ISAM2();
ISAM2(const gtsam::ISAM2Params& params);
ISAM2(const gtsam::ISAM2& other);
bool equals(const gtsam::ISAM2& other, double tol) const;
void print(string s) const;
void printStats() const;
void saveGraph(string s) const;
gtsam::ISAM2Result update();
gtsam::ISAM2Result update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta);
gtsam::ISAM2Result update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::KeyVector& removeFactorIndices);
// TODO: wrap the full version of update
//void update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::KeyVector& removeFactorIndices, FastMap<Key,int>& constrainedKeys);
//void update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& newTheta, const gtsam::KeyVector& removeFactorIndices, FastMap<Key,int>& constrainedKeys, bool force_relinearize);
gtsam::Values getLinearizationPoint() const;
gtsam::Values calculateEstimate() const;
gtsam::Value calculateEstimate(size_t key) const;
gtsam::Values calculateBestEstimate() const;
Matrix marginalCovariance(size_t key) const;
gtsam::VectorValues getDelta() const;
gtsam::NonlinearFactorGraph getFactorsUnsafe() const;
gtsam::Ordering getOrdering() const;
gtsam::VariableIndex getVariableIndex() const;
gtsam::ISAM2Params params() const;
};
#include <gtsam/nonlinear/NonlinearISAM.h>
class NonlinearISAM {
NonlinearISAM();
NonlinearISAM(int reorderInterval);
void print(string s) const;
void printStats() const;
void saveGraph(string s) const;
gtsam::Values estimate() const;
Matrix marginalCovariance(size_t key) const;
int reorderInterval() const;
int reorderCounter() const;
void update(const gtsam::NonlinearFactorGraph& newFactors, const gtsam::Values& initialValues);
void reorder_relinearize();
void addKey(size_t key);
void setOrdering(const gtsam::Ordering& new_ordering);
// These might be expensive as instead of a reference the wrapper will make a copy
gtsam::GaussianISAM bayesTree() const;
gtsam::Values getLinearizationPoint() const;
gtsam::Ordering getOrdering() const;
gtsam::NonlinearFactorGraph getFactorsUnsafe() const;
};
//*************************************************************************
// Nonlinear factor types
//*************************************************************************
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Cal3DS2.h>
#include <gtsam/geometry/Cal3_S2Stereo.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/geometry/StereoPoint2.h>
#include <gtsam/slam/PriorFactor.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class PriorFactor : gtsam::NoiseModelFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
T prior() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/slam/BetweenFactor.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::imuBias::ConstantBias}>
virtual class BetweenFactor : gtsam::NoiseModelFactor {
BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel);
T measured() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/nonlinear/NonlinearEquality.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class NonlinearEquality : gtsam::NoiseModelFactor {
// Constructor - forces exact evaluation
NonlinearEquality(size_t j, const T& feasible);
// Constructor - allows inexact evaluation
NonlinearEquality(size_t j, const T& feasible, double error_gain);
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/slam/RangeFactor.h>
template<POSE, POINT>
virtual class RangeFactor : gtsam::NoiseModelFactor {
RangeFactor(size_t key1, size_t key2, double measured, const gtsam::noiseModel::Base* noiseModel);
};
typedef gtsam::RangeFactor<gtsam::Pose2, gtsam::Point2> RangeFactorPosePoint2;
typedef gtsam::RangeFactor<gtsam::Pose3, gtsam::Point3> RangeFactorPosePoint3;
typedef gtsam::RangeFactor<gtsam::Pose2, gtsam::Pose2> RangeFactorPose2;
typedef gtsam::RangeFactor<gtsam::Pose3, gtsam::Pose3> RangeFactorPose3;
typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::Point3> RangeFactorCalibratedCameraPoint;
typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::Point3> RangeFactorSimpleCameraPoint;
typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::CalibratedCamera> RangeFactorCalibratedCamera;
typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::SimpleCamera> RangeFactorSimpleCamera;
#include <gtsam/slam/BearingFactor.h>
template<POSE, POINT, ROTATION>
virtual class BearingFactor : gtsam::NoiseModelFactor {
BearingFactor(size_t key1, size_t key2, const ROTATION& measured, const gtsam::noiseModel::Base* noiseModel);
// enabling serialization functionality
void serialize() const;
};
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingFactor2D;
#include <gtsam/slam/BearingRangeFactor.h>
template<POSE, POINT, ROTATION>
virtual class BearingRangeFactor : gtsam::NoiseModelFactor {
BearingRangeFactor(size_t poseKey, size_t pointKey, const ROTATION& measuredBearing, double measuredRange, const gtsam::noiseModel::Base* noiseModel);
// enabling serialization functionality
void serialize() const;
};
typedef gtsam::BearingRangeFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingRangeFactor2D;
#include <gtsam/slam/ProjectionFactor.h>
template<POSE, LANDMARK, CALIBRATION>
virtual class GenericProjectionFactor : gtsam::NoiseModelFactor {
GenericProjectionFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t pointKey, const CALIBRATION* k);
GenericProjectionFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t pointKey, const CALIBRATION* k, const POSE& body_P_sensor);
GenericProjectionFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t pointKey, const CALIBRATION* k, bool throwCheirality, bool verboseCheirality);
GenericProjectionFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t pointKey, const CALIBRATION* k, bool throwCheirality, bool verboseCheirality,
const POSE& body_P_sensor);
gtsam::Point2 measured() const;
CALIBRATION* calibration() const;
bool verboseCheirality() const;
bool throwCheirality() const;
// enabling serialization functionality
void serialize() const;
};
typedef gtsam::GenericProjectionFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2> GenericProjectionFactorCal3_S2;
typedef gtsam::GenericProjectionFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3DS2> GenericProjectionFactorCal3DS2;
#include <gtsam/slam/GeneralSFMFactor.h>
template<CAMERA, LANDMARK>
virtual class GeneralSFMFactor : gtsam::NoiseModelFactor {
GeneralSFMFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* model, size_t cameraKey, size_t landmarkKey);
gtsam::Point2 measured() const;
};
typedef gtsam::GeneralSFMFactor<gtsam::SimpleCamera, gtsam::Point3> GeneralSFMFactorCal3_S2;
typedef gtsam::GeneralSFMFactor<gtsam::PinholeCameraCal3DS2, gtsam::Point3> GeneralSFMFactorCal3DS2;
template<CALIBRATION = {gtsam::Cal3_S2}>
virtual class GeneralSFMFactor2 : gtsam::NoiseModelFactor {
GeneralSFMFactor2(const gtsam::Point2& measured, const gtsam::noiseModel::Base* model, size_t poseKey, size_t landmarkKey, size_t calibKey);
gtsam::Point2 measured() const;
// enabling serialization functionality
void serialize() const;
};
#include <gtsam/slam/StereoFactor.h>
template<POSE, LANDMARK>
virtual class GenericStereoFactor : gtsam::NoiseModelFactor {
GenericStereoFactor(const gtsam::StereoPoint2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t landmarkKey, const gtsam::Cal3_S2Stereo* K);
gtsam::StereoPoint2 measured() const;
gtsam::Cal3_S2Stereo* calibration() const;
// enabling serialization functionality
void serialize() const;
};
typedef gtsam::GenericStereoFactor<gtsam::Pose3, gtsam::Point3> GenericStereoFactor3D;
#include <gtsam/slam/PoseTranslationPrior.h>
template<POSE>
virtual class PoseTranslationPrior : gtsam::NoiseModelFactor {
PoseTranslationPrior(size_t key, const POSE& pose_z, const gtsam::noiseModel::Base* noiseModel);
};
typedef gtsam::PoseTranslationPrior<gtsam::Pose2> PoseTranslationPrior2D;
typedef gtsam::PoseTranslationPrior<gtsam::Pose3> PoseTranslationPrior3D;
#include <gtsam/slam/PoseRotationPrior.h>
template<POSE>
virtual class PoseRotationPrior : gtsam::NoiseModelFactor {
PoseRotationPrior(size_t key, const POSE& pose_z, const gtsam::noiseModel::Base* noiseModel);
};
typedef gtsam::PoseRotationPrior<gtsam::Pose2> PoseRotationPrior2D;
typedef gtsam::PoseRotationPrior<gtsam::Pose3> PoseRotationPrior3D;
#include <gtsam/slam/EssentialMatrixFactor.h>
virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
EssentialMatrixFactor(size_t key, const gtsam::Point2& pA, const gtsam::Point2& pB,
const gtsam::noiseModel::Base* noiseModel);
};
#include <gtsam/slam/dataset.h>
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
//*************************************************************************
// Navigation
//*************************************************************************
namespace imuBias {
#include <gtsam/navigation/ImuBias.h>
virtual class ConstantBias : gtsam::Value {
// Standard Constructor
ConstantBias();
ConstantBias(Vector biasAcc, Vector biasGyro);
// Testable
void print(string s) const;
bool equals(const gtsam::imuBias::ConstantBias& expected, double tol) const;
// Group
static gtsam::imuBias::ConstantBias identity();
gtsam::imuBias::ConstantBias inverse() const;
gtsam::imuBias::ConstantBias compose(const gtsam::imuBias::ConstantBias& b) const;
gtsam::imuBias::ConstantBias between(const gtsam::imuBias::ConstantBias& b) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::imuBias::ConstantBias retract(Vector v) const;
Vector localCoordinates(const gtsam::imuBias::ConstantBias& b) const;
// Lie Group
static gtsam::imuBias::ConstantBias Expmap(Vector v);
static Vector Logmap(const gtsam::imuBias::ConstantBias& b);
// Standard Interface
Vector vector() const;
Vector accelerometer() const;
Vector gyroscope() const;
Vector correctAccelerometer(Vector measurement) const;
Vector correctGyroscope(Vector measurement) const;
};
}///\namespace imuBias
#include <gtsam/navigation/ImuFactor.h>
class ImuFactorPreintegratedMeasurements {
// Standard Constructor
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance, Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
};
virtual class ImuFactor : gtsam::NonlinearFactor {
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::Pose3& body_P_sensor);
// Standard Interface
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::LieVector& vel_i, gtsam::Pose3& pose_j, gtsam::LieVector& vel_j,
const gtsam::imuBias::ConstantBias& bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
};
#include <gtsam/navigation/CombinedImuFactor.h>
class CombinedImuFactorPreintegratedMeasurements {
// Standard Constructor
CombinedImuFactorPreintegratedMeasurements(
const gtsam::imuBias::ConstantBias& bias,
Matrix measuredAccCovariance,
Matrix measuredOmegaCovariance,
Matrix integrationErrorCovariance,
Matrix biasAccCovariance,
Matrix biasOmegaCovariance,
Matrix biasAccOmegaInit);
CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
};
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::noiseModel::Base* model);
// Standard Interface
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::LieVector& vel_i, gtsam::Pose3& pose_j, gtsam::LieVector& vel_j,
const gtsam::imuBias::ConstantBias& bias_i, const gtsam::imuBias::ConstantBias& bias_j,
const gtsam::CombinedImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
};
//*************************************************************************
// Utilities
//*************************************************************************
namespace utilities {
#include <matlab.h>
Matrix extractPoint2(const gtsam::Values& values);
Matrix extractPoint3(const gtsam::Values& values);
Matrix extractPose2(const gtsam::Values& values);
gtsam::Values allPose3s(gtsam::Values& values);
Matrix extractPose3(const gtsam::Values& values);
void perturbPoint2(gtsam::Values& values, double sigma, int seed);
void perturbPoint3(gtsam::Values& values, double sigma, int seed);
void insertBackprojections(gtsam::Values& values, const gtsam::SimpleCamera& c, Vector J, Matrix Z, double depth);
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K, const gtsam::Pose3& body_P_sensor);
Matrix reprojectionErrors(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values);
} //\namespace utilities
}