gtsam/gtsam/nonlinear/Expression.h

304 lines
9.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Expression.h
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief Expressions for Block Automatic Differentiation
*/
#pragma once
#include <gtsam/nonlinear/internal/JacobianMap.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/base/VectorSpace.h>
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <map>
// Forward declare tests
class ExpressionFactorShallowTest;
namespace gtsam {
// Forward declares
class Values;
template<typename T> class ExpressionFactor;
namespace internal {
template<typename T> class ExecutionTrace;
template<typename T> class ExpressionNode;
}
/**
* Expression class that supports automatic differentiation
*/
template<typename T>
class Expression {
public:
/// Define type so we can apply it as a meta-function
typedef Expression<T> type;
protected:
// Paul's trick shared pointer, polymorphic root of entire expression tree
boost::shared_ptr<internal::ExpressionNode<T> > root_;
/// Construct with a custom root
Expression(const boost::shared_ptr<internal::ExpressionNode<T> >& root) : root_(root) {}
public:
// Expressions wrap trees of functions that can evaluate their own derivatives.
// The meta-functions below are useful to specify the type of those functions.
// Example, a function taking a camera and a 3D point and yielding a 2D point:
// Expression<Point2>::BinaryFunction<PinholeCamera<Cal3_S2>,Point3>::type
template<class A1>
struct UnaryFunction {
typedef boost::function<
T(const A1&, typename MakeOptionalJacobian<T, A1>::type)> type;
};
template<class A1, class A2>
struct BinaryFunction {
typedef boost::function<
T(const A1&, const A2&, typename MakeOptionalJacobian<T, A1>::type,
typename MakeOptionalJacobian<T, A2>::type)> type;
};
template<class A1, class A2, class A3>
struct TernaryFunction {
typedef boost::function<
T(const A1&, const A2&, const A3&,
typename MakeOptionalJacobian<T, A1>::type,
typename MakeOptionalJacobian<T, A2>::type,
typename MakeOptionalJacobian<T, A3>::type)> type;
};
/// Construct a constant expression
Expression(const T& value);
/// Construct a leaf expression, with Key
Expression(const Key& key);
/// Construct a leaf expression, with Symbol
Expression(const Symbol& symbol);
/// Construct a leaf expression, creating Symbol
Expression(unsigned char c, std::uint64_t j);
/// Construct a unary function expression
template<typename A>
Expression(typename UnaryFunction<A>::type function,
const Expression<A>& expression);
/// Construct a binary function expression
template<typename A1, typename A2>
Expression(typename BinaryFunction<A1, A2>::type function,
const Expression<A1>& expression1, const Expression<A2>& expression2);
/// Construct a ternary function expression
template<typename A1, typename A2, typename A3>
Expression(typename TernaryFunction<A1, A2, A3>::type function,
const Expression<A1>& expression1, const Expression<A2>& expression2,
const Expression<A3>& expression3);
/// Construct a nullary method expression
template<typename A>
Expression(const Expression<A>& expression,
T (A::*method)(typename MakeOptionalJacobian<T, A>::type) const);
/// Construct a unary method expression
template<typename A1, typename A2>
Expression(const Expression<A1>& expression1,
T (A1::*method)(const A2&, typename MakeOptionalJacobian<T, A1>::type,
typename MakeOptionalJacobian<T, A2>::type) const,
const Expression<A2>& expression2);
/// Construct a binary method expression
template<typename A1, typename A2, typename A3>
Expression(const Expression<A1>& expression1,
T (A1::*method)(const A2&, const A3&,
typename MakeOptionalJacobian<T, A1>::type,
typename MakeOptionalJacobian<T, A2>::type,
typename MakeOptionalJacobian<T, A3>::type) const,
const Expression<A2>& expression2, const Expression<A3>& expression3);
/// Destructor
virtual ~Expression() {
}
/// Return keys that play in this expression
std::set<Key> keys() const;
/// Return dimensions for each argument, as a map
void dims(std::map<Key, int>& map) const;
/// Print
void print(const std::string& s) const;
/**
* @brief Return value and optional derivatives, reverse AD version
* Notes: this is not terribly efficient, and H should have correct size.
* The order of the Jacobians is same as keys in either keys() or dims()
*/
T value(const Values& values, boost::optional<std::vector<Matrix>&> H =
boost::none) const;
/**
* @return a "deep" copy of this Expression
* "deep" is in quotes because the ExpressionNode hierarchy is *not* cloned.
* The intent is for derived classes to be copied using only a Base pointer.
*/
virtual boost::shared_ptr<Expression> clone() const {
return boost::make_shared<Expression>(*this);
}
/// Return root
const boost::shared_ptr<internal::ExpressionNode<T> >& root() const;
/// Return size needed for memory buffer in traceExecution
size_t traceSize() const;
/// Add another expression to this expression
Expression<T>& operator+=(const Expression<T>& e);
protected:
/// Default constructor, for serialization
Expression() {}
/// Keys and dimensions in same order
typedef std::pair<KeyVector, FastVector<int> > KeysAndDims;
KeysAndDims keysAndDims() const;
/// private version that takes keys and dimensions, returns derivatives
T valueAndDerivatives(const Values& values, const KeyVector& keys,
const FastVector<int>& dims, std::vector<Matrix>& H) const;
/// trace execution, very unsafe
T traceExecution(const Values& values, internal::ExecutionTrace<T>& trace,
void* traceStorage) const;
/// brief Return value and derivatives, reverse AD version
T valueAndJacobianMap(const Values& values,
internal::JacobianMap& jacobians) const;
// be very selective on who can access these private methods:
friend class ExpressionFactor<T> ;
friend class internal::ExpressionNode<T>;
// and add tests
friend class ::ExpressionFactorShallowTest;
};
/**
* A ScalarMultiplyExpression is a specialization of Expression that multiplies with a scalar
* It optimizes the Jacobian calculation for this specific case
*/
template <typename T>
class ScalarMultiplyExpression : public Expression<T> {
// Check that T is a vector space
BOOST_CONCEPT_ASSERT((gtsam::IsVectorSpace<T>));
public:
explicit ScalarMultiplyExpression(double s, const Expression<T>& e);
};
/**
* A BinarySumExpression is a specialization of Expression that adds two expressions together
* It optimizes the Jacobian calculation for this specific case
*/
template <typename T>
class BinarySumExpression : public Expression<T> {
// Check that T is a vector space
BOOST_CONCEPT_ASSERT((gtsam::IsVectorSpace<T>));
public:
explicit BinarySumExpression(const Expression<T>& e1, const Expression<T>& e2);
};
/**
* Create an expression out of a linear function f:T->A with (constant) Jacobian dTdA
* TODO(frank): create a more efficient version like ScalarMultiplyExpression. This version still
* does a malloc every linearize.
*/
template <typename T, typename A>
Expression<T> linearExpression(
const boost::function<T(A)>& f, const Expression<A>& expression,
const Eigen::Matrix<double, traits<T>::dimension, traits<A>::dimension>& dTdA) {
// Use lambda to endow f with a linear Jacobian
typename Expression<T>::template UnaryFunction<A>::type g =
[=](const A& value, typename MakeOptionalJacobian<T, A>::type H) {
if (H)
*H << dTdA;
return f(value);
};
return Expression<T>(g, expression);
}
/**
* Construct an expression that executes the scalar multiplication with an input expression
* The type T must be a vector space
* Example:
* Expression<Point2> a(0), b = 12 * a;
*/
template <typename T>
ScalarMultiplyExpression<T> operator*(double s, const Expression<T>& e) {
return ScalarMultiplyExpression<T>(s, e);
}
/**
* Construct an expression that sums two input expressions of the same type T
* The type T must be a vector space
* Example:
* Expression<Point2> a(0), b(1), c = a + b;
*/
template <typename T>
BinarySumExpression<T> operator+(const Expression<T>& e1, const Expression<T>& e2) {
return BinarySumExpression<T>(e1, e2);
}
/// Construct an expression that subtracts one expression from another
template <typename T>
BinarySumExpression<T> operator-(const Expression<T>& e1, const Expression<T>& e2) {
// TODO(frank, abe): Implement an actual negate operator instead of multiplying by -1
return e1 + (-1.0) * e2;
}
/**
* Construct a product expression, assumes T::compose(T) -> T
* Example:
* Expression<Point2> a(0), b(1), c = a*b;
*/
template<typename T>
Expression<T> operator*(const Expression<T>& e1, const Expression<T>& e2);
/**
* Construct an array of unknown expressions with successive symbol keys
* Example:
* createUnknowns<Pose2>(3,'x') creates unknown expressions for x0,x1,x2
*/
template<typename T>
std::vector<Expression<T> > createUnknowns(size_t n, char c, size_t start = 0);
} // namespace gtsam
#include <gtsam/nonlinear/Expression-inl.h>