gtsam/examples/VisualISAMExample.cpp

143 lines
5.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VisualISAMExample.cpp
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
* This version uses iSAM to solve the problem incrementally
* @author Duy-Nguyen Ta
* @author Frank Dellaert
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Projection factors to model the camera's landmark observations.
// Also, we will initialize the robot at some location using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
// We want to use iSAM to solve the structure-from-motion problem incrementally, so
// include iSAM here
#include <gtsam/nonlinear/NonlinearISAM.h>
// iSAM requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
noiseModel::Isotropic::shared_ptr noise = //
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of ground-truth poses
vector<Pose3> poses = createPoses();
// Create a NonlinearISAM object which will relinearize and reorder the variables
// every "relinearizeInterval" updates
int relinearizeInterval = 3;
NonlinearISAM isam(relinearizeInterval);
// Create a Factor Graph and Values to hold the new data
NonlinearFactorGraph graph;
Values initialEstimate;
// Loop over the different poses, adding the observations to iSAM incrementally
for (size_t i = 0; i < poses.size(); ++i) {
// Add factors for each landmark observation
for (size_t j = 0; j < points.size(); ++j) {
// Create ground truth measurement
PinholeCamera<Cal3_S2> camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
// Add measurement
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >(measurement, noise,
Symbol('x', i), Symbol('l', j), K);
}
// Intentionally initialize the variables off from the ground truth
Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
Pose3 initial_xi = poses[i].compose(noise);
// Add an initial guess for the current pose
initialEstimate.insert(Symbol('x', i), initial_xi);
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
// and a prior on the first landmark to set the scale
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
// adding it to iSAM.
if (i == 0) {
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
graph.emplace_shared<PriorFactor<Pose3> >(Symbol('x', 0), poses[0], poseNoise);
// Add a prior on landmark l0
noiseModel::Isotropic::shared_ptr pointNoise =
noiseModel::Isotropic::Sigma(3, 0.1);
graph.emplace_shared<PriorFactor<Point3> >(Symbol('l', 0), points[0], pointNoise);
// Add initial guesses to all observed landmarks
Point3 noise(-0.25, 0.20, 0.15);
for (size_t j = 0; j < points.size(); ++j) {
// Intentionally initialize the variables off from the ground truth
Point3 initial_lj = points[j] + noise;
initialEstimate.insert(Symbol('l', j), initial_lj);
}
} else {
// Update iSAM with the new factors
isam.update(graph, initialEstimate);
Values currentEstimate = isam.estimate();
cout << "****************************************************" << endl;
cout << "Frame " << i << ": " << endl;
currentEstimate.print("Current estimate: ");
// Clear the factor graph and values for the next iteration
graph.resize(0);
initialEstimate.clear();
}
}
return 0;
}
/* ************************************************************************* */