591 lines
16 KiB
C++
591 lines
16 KiB
C++
/**
|
|
* @file testLinearFactorGraph.cpp
|
|
* @brief Unit tests for Linear Factor Graph
|
|
* @author Christian Potthast
|
|
**/
|
|
|
|
#include <string.h>
|
|
#include <iostream>
|
|
using namespace std;
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include "Matrix.h"
|
|
#include "Ordering.h"
|
|
#include "smallExample.h"
|
|
#include "GaussianBayesNet.h"
|
|
#include <FactorGraph-inl.h> // needed for FactorGraph::eliminate
|
|
|
|
using namespace gtsam;
|
|
|
|
double tol=1e-4;
|
|
|
|
/* ************************************************************************* */
|
|
/* unit test for equals (LinearFactorGraph1 == LinearFactorGraph2) */
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, equals ){
|
|
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
LinearFactorGraph fg2 = createLinearFactorGraph();
|
|
CHECK(fg.equals(fg2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, error )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
VectorConfig cfg = createZeroDelta();
|
|
|
|
// note the error is the same as in testNonlinearFactorGraph as a
|
|
// zero delta config in the linear graph is equivalent to noisy in
|
|
// non-linear, which is really linear under the hood
|
|
double actual = fg.error(cfg);
|
|
DOUBLES_EQUAL( 5.625, actual, 1e-9 );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/* unit test for find seperator */
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, find_separator )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
set<string> separator = fg.find_separator("x2");
|
|
set<string> expected;
|
|
expected.insert("x1");
|
|
expected.insert("l1");
|
|
|
|
CHECK(separator.size()==expected.size());
|
|
set<string>::iterator it1 = separator.begin(), it2 = expected.begin();
|
|
for(; it1!=separator.end(); it1++, it2++)
|
|
CHECK(*it1 == *it2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, combine_factors_x1 )
|
|
{
|
|
// create a small example for a linear factor graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// create sigmas
|
|
double sigma1 = 0.1;
|
|
double sigma2 = 0.1;
|
|
double sigma3 = 0.2;
|
|
Vector sigmas = Vector_(6, sigma1, sigma1, sigma2, sigma2, sigma3, sigma3);
|
|
|
|
// combine all factors
|
|
LinearFactor::shared_ptr actual = fg.removeAndCombineFactors("x1");
|
|
|
|
// the expected linear factor
|
|
Matrix Al1 = Matrix_(6,2,
|
|
0., 0.,
|
|
0., 0.,
|
|
0., 0.,
|
|
0., 0.,
|
|
1., 0.,
|
|
0., 1.
|
|
);
|
|
|
|
Matrix Ax1 = Matrix_(6,2,
|
|
1., 0.,
|
|
0.00, 1.,
|
|
-1., 0.,
|
|
0.00,-1.,
|
|
-1., 0.,
|
|
00., -1.
|
|
);
|
|
|
|
Matrix Ax2 = Matrix_(6,2,
|
|
0., 0.,
|
|
0., 0.,
|
|
1., 0.,
|
|
+0.,1.,
|
|
0., 0.,
|
|
0., 0.
|
|
);
|
|
|
|
// the expected RHS vector
|
|
Vector b(6);
|
|
b(0) = -1*sigma1;
|
|
b(1) = -1*sigma1;
|
|
b(2) = 2*sigma2;
|
|
b(3) = -1*sigma2;
|
|
b(4) = 0*sigma3;
|
|
b(5) = 1*sigma3;
|
|
|
|
vector<pair<string, Matrix> > meas;
|
|
meas.push_back(make_pair("l1", Al1));
|
|
meas.push_back(make_pair("x1", Ax1));
|
|
meas.push_back(make_pair("x2", Ax2));
|
|
LinearFactor expected(meas, b, sigmas);
|
|
//LinearFactor expected("l1", Al1, "x1", Ax1, "x2", Ax2, b);
|
|
|
|
// check if the two factors are the same
|
|
CHECK(assert_equal(expected,*actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, combine_factors_x2 )
|
|
{
|
|
// create a small example for a linear factor graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// determine sigmas
|
|
double sigma1 = 0.1;
|
|
double sigma2 = 0.2;
|
|
Vector sigmas = Vector_(4, sigma1, sigma1, sigma2, sigma2);
|
|
|
|
// combine all factors
|
|
LinearFactor::shared_ptr actual = fg.removeAndCombineFactors("x2");
|
|
|
|
// the expected linear factor
|
|
Matrix Al1 = Matrix_(4,2,
|
|
// l1
|
|
0., 0.,
|
|
0., 0.,
|
|
1., 0.,
|
|
0., 1.
|
|
);
|
|
|
|
Matrix Ax1 = Matrix_(4,2,
|
|
// x1
|
|
-1., 0., // f2
|
|
0.00,-1., // f2
|
|
0.00, 0., // f4
|
|
0.00, 0. // f4
|
|
);
|
|
|
|
Matrix Ax2 = Matrix_(4,2,
|
|
// x2
|
|
1., 0.,
|
|
+0.,1.,
|
|
-1., 0.,
|
|
+0.,-1.
|
|
);
|
|
|
|
// the expected RHS vector
|
|
Vector b(4);
|
|
b(0) = 2*sigma1;
|
|
b(1) = -1*sigma1;
|
|
b(2) = -1*sigma2;
|
|
b(3) = 1.5*sigma2;
|
|
|
|
vector<pair<string, Matrix> > meas;
|
|
meas.push_back(make_pair("l1", Al1));
|
|
meas.push_back(make_pair("x1", Ax1));
|
|
meas.push_back(make_pair("x2", Ax2));
|
|
LinearFactor expected(meas, b, sigmas);
|
|
|
|
// check if the two factors are the same
|
|
CHECK(assert_equal(expected,*actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( LinearFactorGraph, eliminateOne_x1 )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("x1");
|
|
|
|
// create expected Conditional Gaussian
|
|
Matrix R11 = Matrix_(2,2,
|
|
1.0, 0.0,
|
|
0.0, 1.0
|
|
);
|
|
Matrix S12 = Matrix_(2,2,
|
|
-0.111111, 0.00,
|
|
+0.00,-0.111111
|
|
);
|
|
Matrix S13 = Matrix_(2,2,
|
|
-0.444444, 0.00,
|
|
+0.00,-0.444444
|
|
);
|
|
Vector d(2); d(0) = -0.133333; d(1) = -0.0222222;
|
|
Vector sigma(2); sigma(0) = 1./15; sigma(1) = 1./15;
|
|
|
|
ConditionalGaussian expected("x1",d,R11,"l1",S12,"x2",S13,sigma);
|
|
|
|
CHECK(assert_equal(expected,*actual,tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( LinearFactorGraph, eliminateOne_x2 )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("x2");
|
|
|
|
// create expected Conditional Gaussian
|
|
Matrix R11 = Matrix_(2,2,
|
|
1.0, 0.0,
|
|
0.0, 1.0
|
|
);
|
|
Matrix S12 = Matrix_(2,2,
|
|
-0.2, 0.0,
|
|
+0.0,-0.2
|
|
);
|
|
Matrix S13 = Matrix_(2,2,
|
|
-0.8, 0.0,
|
|
+0.0,-0.8
|
|
);
|
|
Vector d(2); d(0) = 0.2; d(1) = -0.14;
|
|
Vector sigma(2); sigma(0) = 0.0894427; sigma(1) = 0.0894427;
|
|
|
|
ConditionalGaussian expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
|
|
|
|
CHECK(assert_equal(expected,*actual,tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, eliminateOne_l1 )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("l1");
|
|
|
|
// create expected Conditional Gaussian
|
|
Matrix R11 = Matrix_(2,2,
|
|
1.0, 0.0,
|
|
0.0, 1.0
|
|
);
|
|
Matrix S12 = Matrix_(2,2,
|
|
-0.5, 0.0,
|
|
+0.0,-0.5
|
|
);
|
|
Matrix S13 = Matrix_(2,2,
|
|
-0.5, 0.0,
|
|
+0.0,-0.5
|
|
);
|
|
Vector d(2); d(0) = -0.1; d(1) = 0.25;
|
|
Vector sigma(2); sigma(0) = 0.141421; sigma(1) = 0.141421;
|
|
|
|
ConditionalGaussian expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
|
|
|
|
CHECK(assert_equal(expected,*actual,tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, eliminateAll )
|
|
{
|
|
// create expected Chordal bayes Net
|
|
double data1[] = { 1.0, 0.0,
|
|
0.0, 1.0};
|
|
Matrix R1 = Matrix_(2,2, data1);
|
|
Vector d1(2); d1(0) = -0.1; d1(1) = -0.1;
|
|
Vector sigma1(2); sigma1(0) = 0.1; sigma1(1) = 0.1;
|
|
|
|
ConditionalGaussian::shared_ptr cg1(new ConditionalGaussian("x1",d1, R1, sigma1));
|
|
|
|
double data21[] = { 1.0, 0.0,
|
|
0.0, 1.0};
|
|
Matrix R2 = Matrix_(2,2, data21);
|
|
double data22[] = { -1.0, 0.0,
|
|
0.0, -1.0};
|
|
Matrix A1 = Matrix_(2,2, data22);
|
|
Vector d2(2); d2(0) = 0.0; d2(1) = 0.2;
|
|
Vector sigma2(2); sigma2(0) = 0.149071; sigma2(1) = 0.149071;
|
|
|
|
ConditionalGaussian::shared_ptr cg2(new ConditionalGaussian("l1",d2, R2,"x1", A1,sigma2));
|
|
|
|
double data31[] = { 1.0, 0.0,
|
|
0.0, 1.0};
|
|
Matrix R3 = Matrix_(2,2, data31);
|
|
double data32[] = { -0.2, 0.0,
|
|
0.0, -0.2};
|
|
Matrix A21 = Matrix_(2,2, data32);
|
|
double data33[] = { -0.8, 0.0,
|
|
0.0, -0.8};
|
|
Matrix A22 = Matrix_(2,2, data33);
|
|
|
|
Vector d3(2); d3(0) = 0.2; d3(1) = -0.14;
|
|
Vector sigma3(2); sigma3(0) = 0.0894427; sigma3(1) = 0.0894427;
|
|
|
|
ConditionalGaussian::shared_ptr cg3(new ConditionalGaussian("x2",d3, R3,"l1", A21, "x1", A22, sigma3));
|
|
|
|
GaussianBayesNet expected;
|
|
expected.push_back(cg3);
|
|
expected.push_back(cg2);
|
|
expected.push_back(cg1);
|
|
|
|
// Check one ordering
|
|
LinearFactorGraph fg1 = createLinearFactorGraph();
|
|
Ordering ord1;
|
|
ord1 += "x2","l1","x1";
|
|
GaussianBayesNet actual = fg1.eliminate(ord1);
|
|
CHECK(assert_equal(expected,actual,tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, add_priors )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
LinearFactorGraph actual = fg.add_priors(3);
|
|
LinearFactorGraph expected = createLinearFactorGraph();
|
|
Matrix A = eye(2);
|
|
Vector b = zero(2);
|
|
double sigma = 3.0;
|
|
expected.push_back(LinearFactor::shared_ptr(new LinearFactor("l1",A,b,sigma)));
|
|
expected.push_back(LinearFactor::shared_ptr(new LinearFactor("x1",A,b,sigma)));
|
|
expected.push_back(LinearFactor::shared_ptr(new LinearFactor("x2",A,b,sigma)));
|
|
CHECK(assert_equal(expected,actual)); // Fails
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, copying )
|
|
{
|
|
// Create a graph
|
|
LinearFactorGraph actual = createLinearFactorGraph();
|
|
|
|
// Copy the graph !
|
|
LinearFactorGraph copy = actual;
|
|
|
|
// now eliminate the copy
|
|
Ordering ord1;
|
|
ord1 += "x2","l1","x1";
|
|
GaussianBayesNet actual1 = copy.eliminate(ord1);
|
|
|
|
// Create the same graph, but not by copying
|
|
LinearFactorGraph expected = createLinearFactorGraph();
|
|
|
|
// and check that original is still the same graph
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, matrix )
|
|
{
|
|
// Create a graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x2","l1","x1";
|
|
|
|
Matrix A; Vector b;
|
|
boost::tie(A,b) = fg.matrix(ord);
|
|
|
|
Matrix A1 = Matrix_(2*4,3*2,
|
|
+0., 0., 0., 0., 10., 0., // unary factor on x1 (prior)
|
|
+0., 0., 0., 0., 0., 10.,
|
|
10., 0., 0., 0.,-10., 0., // binary factor on x2,x1 (odometry)
|
|
+0., 10., 0., 0., 0.,-10.,
|
|
+0., 0., 5., 0., -5., 0., // binary factor on l1,x1 (z1)
|
|
+0., 0., 0., 5., 0., -5.,
|
|
-5., 0., 5., 0., 0., 0., // binary factor on x2,l1 (z2)
|
|
+0., -5., 0., 5., 0., 0.
|
|
);
|
|
Vector b1 = Vector_(8,-1., -1., 2., -1., 0., 1., -1., 1.5);
|
|
|
|
EQUALITY(A,A1);
|
|
CHECK(b==b1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, sparse )
|
|
{
|
|
// create a small linear factor graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x2","l1","x1";
|
|
|
|
Matrix ijs = fg.sparse(ord);
|
|
|
|
EQUALITY(ijs, Matrix_(3, 14,
|
|
// f(x1) f(x2,x1) f(l1,x1) f(x2,l1)
|
|
+1., 2., 3., 4., 3., 4., 5.,6., 5., 6., 7., 8.,7.,8.,
|
|
+5., 6., 1., 2., 5., 6., 3.,4., 5., 6., 1., 2.,3.,4.,
|
|
10.,10., 10.,10.,-10.,-10., 5.,5.,-5.,-5., -5.,-5.,5.,5.));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, CONSTRUCTOR_GaussianBayesNet )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += "x2","l1","x1";
|
|
GaussianBayesNet CBN = fg.eliminate(ord);
|
|
|
|
// True LinearFactorGraph
|
|
LinearFactorGraph fg2(CBN);
|
|
GaussianBayesNet CBN2 = fg2.eliminate(ord);
|
|
CHECK(assert_equal(CBN,CBN2));
|
|
|
|
// Base FactorGraph only
|
|
FactorGraph<LinearFactor> fg3(CBN);
|
|
GaussianBayesNet CBN3 = _eliminate<LinearFactor,ConditionalGaussian>(fg3,ord);
|
|
CHECK(assert_equal(CBN,CBN3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, GET_ORDERING)
|
|
{
|
|
Ordering expected;
|
|
expected += "l1","x1","x2";
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
Ordering actual = fg.getOrdering();
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, OPTIMIZE )
|
|
{
|
|
// create a graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// create an ordering
|
|
Ordering ord = fg.getOrdering();
|
|
|
|
// optimize the graph
|
|
VectorConfig actual = fg.optimize(ord);
|
|
|
|
// verify
|
|
VectorConfig expected = createCorrectDelta();
|
|
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, COMBINE_GRAPHS_INPLACE)
|
|
{
|
|
// create a test graph
|
|
LinearFactorGraph fg1 = createLinearFactorGraph();
|
|
|
|
// create another factor graph
|
|
LinearFactorGraph fg2 = createLinearFactorGraph();
|
|
|
|
// get sizes
|
|
int size1 = fg1.size();
|
|
int size2 = fg2.size();
|
|
|
|
// combine them
|
|
fg1.combine(fg2);
|
|
|
|
CHECK(size1+size2 == fg1.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, COMBINE_GRAPHS)
|
|
{
|
|
// create a test graph
|
|
LinearFactorGraph fg1 = createLinearFactorGraph();
|
|
|
|
// create another factor graph
|
|
LinearFactorGraph fg2 = createLinearFactorGraph();
|
|
|
|
// get sizes
|
|
int size1 = fg1.size();
|
|
int size2 = fg2.size();
|
|
|
|
// combine them
|
|
LinearFactorGraph fg3 = LinearFactorGraph::combine2(fg1, fg2);
|
|
|
|
CHECK(size1+size2 == fg3.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// print a vector of ints if needed for debugging
|
|
void print(vector<int> v) {
|
|
for (int k = 0; k < v.size(); k++)
|
|
cout << v[k] << " ";
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, factor_lookup)
|
|
{
|
|
// create a test graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// ask for all factor indices connected to x1
|
|
list<int> x1_factors = fg.factors("x1");
|
|
int x1_indices[] = { 0, 1, 2 };
|
|
list<int> x1_expected(x1_indices, x1_indices + 3);
|
|
CHECK(x1_factors==x1_expected);
|
|
|
|
// ask for all factor indices connected to x2
|
|
list<int> x2_factors = fg.factors("x2");
|
|
int x2_indices[] = { 1, 3 };
|
|
list<int> x2_expected(x2_indices, x2_indices + 2);
|
|
CHECK(x2_factors==x2_expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, findAndRemoveFactors )
|
|
{
|
|
// create the graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// We expect to remove these three factors: 0, 1, 2
|
|
LinearFactor::shared_ptr f0 = fg[0];
|
|
LinearFactor::shared_ptr f1 = fg[1];
|
|
LinearFactor::shared_ptr f2 = fg[2];
|
|
|
|
// call the function
|
|
vector<LinearFactor::shared_ptr> factors = fg.findAndRemoveFactors("x1");
|
|
|
|
// Check the factors
|
|
CHECK(f0==factors[0]);
|
|
CHECK(f1==factors[1]);
|
|
CHECK(f2==factors[2]);
|
|
|
|
// CHECK if the factors are deleted from the factor graph
|
|
LONGS_EQUAL(1,fg.nrFactors());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, findAndRemoveFactors_twice )
|
|
{
|
|
// create the graph
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
|
|
// We expect to remove these three factors: 0, 1, 2
|
|
LinearFactor::shared_ptr f0 = fg[0];
|
|
LinearFactor::shared_ptr f1 = fg[1];
|
|
LinearFactor::shared_ptr f2 = fg[2];
|
|
|
|
// call the function
|
|
vector<LinearFactor::shared_ptr> factors = fg.findAndRemoveFactors("x1");
|
|
|
|
// Check the factors
|
|
CHECK(f0==factors[0]);
|
|
CHECK(f1==factors[1]);
|
|
CHECK(f2==factors[2]);
|
|
|
|
factors = fg.findAndRemoveFactors("x1");
|
|
CHECK(factors.size() == 0);
|
|
|
|
// CHECK if the factors are deleted from the factor graph
|
|
LONGS_EQUAL(1,fg.nrFactors());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(LinearFactorGraph, createSmoother)
|
|
{
|
|
LinearFactorGraph fg1 = createSmoother(2);
|
|
LONGS_EQUAL(3,fg1.size());
|
|
LinearFactorGraph fg2 = createSmoother(3);
|
|
LONGS_EQUAL(5,fg2.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( LinearFactorGraph, variables )
|
|
{
|
|
LinearFactorGraph fg = createLinearFactorGraph();
|
|
Dimensions expected;
|
|
insert(expected)("l1", 2)("x1", 2)("x2", 2);
|
|
Dimensions actual = fg.dimensions();
|
|
CHECK(expected==actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|