gtsam/cpp/GaussianBayesNet.cpp

109 lines
3.4 KiB
C++

/**
* @file GaussianBayesNet.cpp
* @brief Chordal Bayes Net, the result of eliminating a factor graph
* @author Frank Dellaert
*/
#include <stdarg.h>
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include "GaussianBayesNet.h"
#include "VectorConfig.h"
using namespace std;
using namespace gtsam;
// Explicitly instantiate so we don't have to include everywhere
#include "BayesNet-inl.h"
template class BayesNet<ConditionalGaussian>;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
#define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
namespace gtsam {
/* ************************************************************************* */
GaussianBayesNet scalarGaussian(const string& key, double mu, double sigma) {
GaussianBayesNet bn;
ConditionalGaussian::shared_ptr
conditional(new ConditionalGaussian(key, Vector_(1,mu), eye(1), Vector_(1,sigma)));
bn.push_back(conditional);
return bn;
}
/* ************************************************************************* */
GaussianBayesNet simpleGaussian(const string& key, const Vector& mu, double sigma) {
GaussianBayesNet bn;
size_t n = mu.size();
ConditionalGaussian::shared_ptr
conditional(new ConditionalGaussian(key, mu, eye(n), repeat(n,sigma)));
bn.push_back(conditional);
return bn;
}
/* ************************************************************************* */
VectorConfig optimize(const GaussianBayesNet& bn)
{
VectorConfig result;
/** solve each node in turn in topological sort order (parents first)*/
BOOST_REVERSE_FOREACH(ConditionalGaussian::shared_ptr cg, bn) {
Vector x = cg->solve(result); // Solve for that variable
result.insert(cg->key(),x); // store result in partial solution
}
return result;
}
/* ************************************************************************* */
pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
// add the dimensions of all variables to get matrix dimension
// and at the same time create a mapping from keys to indices
size_t N=0; map<string,size_t> mapping;
BOOST_FOREACH(ConditionalGaussian::shared_ptr cg,bn) {
mapping.insert(make_pair(cg->key(),N));
N += cg->dim();
}
// create matrix and copy in values
Matrix R = zeros(N,N);
Vector d(N);
string key; size_t I;
FOREACH_PAIR(key,I,mapping) {
// find corresponding conditional
ConditionalGaussian::shared_ptr cg = bn[key];
// get RHS and copy to d
const Vector& d_ = cg->get_d();
const size_t n = d_.size();
for (size_t i=0;i<n;i++)
d(I+i) = d_(i);
// get leading R matrix and copy to R
const Matrix& R_ = cg->get_R();
for (size_t i=0;i<n;i++)
for(size_t j=0;j<n;j++)
R(I+i,I+j) = R_(i,j);
// loop over S matrices and copy them into R
ConditionalGaussian::const_iterator keyS = cg->parentsBegin();
for (; keyS!=cg->parentsEnd(); keyS++) {
Matrix S = keyS->second; // get S matrix
const size_t m = S.size1(), n = S.size2(); // find S size
const size_t J = mapping[keyS->first]; // find column index
for (size_t i=0;i<m;i++)
for(size_t j=0;j<n;j++)
R(I+i,J+j) = S(i,j);
} // keyS
} // keyI
return make_pair(R,d);
}
/* ************************************************************************* */
} // namespace gtsam