335 lines
11 KiB
C++
335 lines
11 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file CameraSet.h
|
|
* @brief Base class to create smart factors on poses or cameras
|
|
* @author Frank Dellaert
|
|
* @date Feb 19, 2015
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/CalibratedCamera.h> // for Cheirality exception
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/SymmetricBlockMatrix.h>
|
|
#include <gtsam/base/FastMap.h>
|
|
#include <vector>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* @brief A set of cameras, all with their own calibration
|
|
*/
|
|
template<class CAMERA>
|
|
class CameraSet: public std::vector<CAMERA> {
|
|
|
|
protected:
|
|
|
|
/**
|
|
* 2D measurement and noise model for each of the m views
|
|
* The order is kept the same as the keys that we use to create the factor.
|
|
*/
|
|
typedef typename CAMERA::Measurement Z;
|
|
|
|
static const int D = traits<CAMERA>::dimension; ///< Camera dimension
|
|
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
|
|
|
|
/// Make a vector of re-projection errors
|
|
static Vector ErrorVector(const std::vector<Z>& predicted,
|
|
const std::vector<Z>& measured) {
|
|
|
|
// Check size
|
|
size_t m = predicted.size();
|
|
if (measured.size() != m)
|
|
throw std::runtime_error("CameraSet::errors: size mismatch");
|
|
|
|
// Project and fill error vector
|
|
Vector b(ZDim * m);
|
|
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
|
Z e = predicted[i] - measured[i];
|
|
b.segment<ZDim>(row) = e.vector();
|
|
}
|
|
return b;
|
|
}
|
|
|
|
public:
|
|
|
|
/// Definitions for blocks of F
|
|
typedef Eigen::Matrix<double, ZDim, D> MatrixZD;
|
|
typedef std::vector<MatrixZD> FBlocks;
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
virtual void print(const std::string& s = "") const {
|
|
std::cout << s << "CameraSet, cameras = \n";
|
|
for (size_t k = 0; k < this->size(); ++k)
|
|
this->at(k).print(s);
|
|
}
|
|
|
|
/// equals
|
|
bool equals(const CameraSet& p, double tol = 1e-9) const {
|
|
if (this->size() != p.size())
|
|
return false;
|
|
bool camerasAreEqual = true;
|
|
for (size_t i = 0; i < this->size(); i++) {
|
|
if (this->at(i).equals(p.at(i), tol) == false)
|
|
camerasAreEqual = false;
|
|
break;
|
|
}
|
|
return camerasAreEqual;
|
|
}
|
|
|
|
/**
|
|
* Project a point (possibly Unit3 at infinity), with derivatives
|
|
* Note that F is a sparse block-diagonal matrix, so instead of a large dense
|
|
* matrix this function returns the diagonal blocks.
|
|
* throws CheiralityException
|
|
*/
|
|
template<class POINT>
|
|
std::vector<Z> project2(const POINT& point, //
|
|
boost::optional<FBlocks&> Fs = boost::none, //
|
|
boost::optional<Matrix&> E = boost::none) const {
|
|
|
|
static const int N = FixedDimension<POINT>::value;
|
|
|
|
// Allocate result
|
|
size_t m = this->size();
|
|
std::vector<Z> z(m);
|
|
|
|
// Allocate derivatives
|
|
if (E) E->resize(ZDim * m, N);
|
|
if (Fs) Fs->resize(m);
|
|
|
|
// Project and fill derivatives
|
|
for (size_t i = 0; i < m; i++) {
|
|
MatrixZD Fi;
|
|
Eigen::Matrix<double, ZDim, N> Ei;
|
|
z[i] = this->at(i).project2(point, Fs ? &Fi : 0, E ? &Ei : 0);
|
|
if (Fs) (*Fs)[i] = Fi;
|
|
if (E) E->block<ZDim, N>(ZDim * i, 0) = Ei;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
|
|
/// Calculate vector [project2(point)-z] of re-projection errors
|
|
template<class POINT>
|
|
Vector reprojectionError(const POINT& point, const std::vector<Z>& measured,
|
|
boost::optional<FBlocks&> Fs = boost::none, //
|
|
boost::optional<Matrix&> E = boost::none) const {
|
|
return ErrorVector(project2(point, Fs, E), measured);
|
|
}
|
|
|
|
/**
|
|
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
|
|
* G = F' * F - F' * E * P * E' * F
|
|
* g = F' * (b - E * P * E' * b)
|
|
* Fixed size version
|
|
*/
|
|
template<int N> // N = 2 or 3
|
|
static SymmetricBlockMatrix SchurComplement(const FBlocks& Fs,
|
|
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
|
|
|
|
// a single point is observed in m cameras
|
|
size_t m = Fs.size();
|
|
|
|
// Create a SymmetricBlockMatrix
|
|
size_t M1 = D * m + 1;
|
|
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
|
|
std::fill(dims.begin(), dims.end() - 1, D);
|
|
dims.back() = 1;
|
|
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
|
|
|
|
// Blockwise Schur complement
|
|
for (size_t i = 0; i < m; i++) { // for each camera
|
|
|
|
const MatrixZD& Fi = Fs[i];
|
|
const Eigen::Matrix<double, ZDim, N> Ei_P = //
|
|
E.block(ZDim * i, 0, ZDim, N) * P;
|
|
|
|
// D = (Dx2) * ZDim
|
|
augmentedHessian(i, m) = Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
|
|
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
|
augmentedHessian(i, i) = Fi.transpose()
|
|
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi);
|
|
|
|
// upper triangular part of the hessian
|
|
for (size_t j = i + 1; j < m; j++) { // for each camera
|
|
const MatrixZD& Fj = Fs[j];
|
|
|
|
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
|
augmentedHessian(i, j) = -Fi.transpose()
|
|
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj);
|
|
}
|
|
} // end of for over cameras
|
|
|
|
augmentedHessian(m, m)(0, 0) += b.squaredNorm();
|
|
return augmentedHessian;
|
|
}
|
|
|
|
/// Computes Point Covariance P, with lambda parameter
|
|
template<int N> // N = 2 or 3
|
|
static void ComputePointCovariance(Eigen::Matrix<double, N, N>& P,
|
|
const Matrix& E, double lambda, bool diagonalDamping = false) {
|
|
|
|
Matrix EtE = E.transpose() * E;
|
|
|
|
if (diagonalDamping) { // diagonal of the hessian
|
|
EtE.diagonal() += lambda * EtE.diagonal();
|
|
} else {
|
|
DenseIndex n = E.cols();
|
|
EtE += lambda * Eigen::MatrixXd::Identity(n, n);
|
|
}
|
|
|
|
P = (EtE).inverse();
|
|
}
|
|
|
|
/// Computes Point Covariance P, with lambda parameter, dynamic version
|
|
static Matrix PointCov(const Matrix& E, const double lambda = 0.0,
|
|
bool diagonalDamping = false) {
|
|
if (E.cols() == 2) {
|
|
Matrix2 P2;
|
|
ComputePointCovariance(P2, E, lambda, diagonalDamping);
|
|
return P2;
|
|
} else {
|
|
Matrix3 P3;
|
|
ComputePointCovariance(P3, E, lambda, diagonalDamping);
|
|
return P3;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
|
|
* Dynamic version
|
|
*/
|
|
static SymmetricBlockMatrix SchurComplement(const FBlocks& Fblocks,
|
|
const Matrix& E, const Vector& b, const double lambda = 0.0,
|
|
bool diagonalDamping = false) {
|
|
if (E.cols() == 2) {
|
|
Matrix2 P;
|
|
ComputePointCovariance(P, E, lambda, diagonalDamping);
|
|
return SchurComplement(Fblocks, E, P, b);
|
|
} else {
|
|
Matrix3 P;
|
|
ComputePointCovariance(P, E, lambda, diagonalDamping);
|
|
return SchurComplement(Fblocks, E, P, b);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
|
|
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
|
|
*/
|
|
template<int N> // N = 2 or 3
|
|
static void UpdateSchurComplement(const FBlocks& Fs, const Matrix& E,
|
|
const Eigen::Matrix<double, N, N>& P, const Vector& b,
|
|
const FastVector<Key>& allKeys, const FastVector<Key>& keys,
|
|
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
|
|
|
|
assert(keys.size()==Fs.size());
|
|
assert(keys.size()<=allKeys.size());
|
|
|
|
FastMap<Key, size_t> KeySlotMap;
|
|
for (size_t slot = 0; slot < allKeys.size(); slot++)
|
|
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
|
|
|
|
// Schur complement trick
|
|
// G = F' * F - F' * E * P * E' * F
|
|
// g = F' * (b - E * P * E' * b)
|
|
|
|
Eigen::Matrix<double, D, D> matrixBlock;
|
|
|
|
// a single point is observed in m cameras
|
|
size_t m = Fs.size(); // cameras observing current point
|
|
size_t M = (augmentedHessian.rows() - 1) / D; // all cameras in the group
|
|
assert(allKeys.size()==M);
|
|
|
|
// Blockwise Schur complement
|
|
for (size_t i = 0; i < m; i++) { // for each camera in the current factor
|
|
|
|
const MatrixZD& Fi = Fs[i];
|
|
const Eigen::Matrix<double, 2, N> Ei_P = E.template block<ZDim, N>(
|
|
ZDim * i, 0) * P;
|
|
|
|
// D = (DxZDim) * (ZDim)
|
|
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
|
|
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
|
|
// Key cameraKey_i = this->keys_[i];
|
|
DenseIndex aug_i = KeySlotMap.at(keys[i]);
|
|
|
|
// information vector - store previous vector
|
|
// vectorBlock = augmentedHessian(aug_i, aug_m).knownOffDiagonal();
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i, M) = augmentedHessian(aug_i, M).knownOffDiagonal()
|
|
+ Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
|
|
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
|
// main block diagonal - store previous block
|
|
matrixBlock = augmentedHessian(aug_i, aug_i);
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i, aug_i) = matrixBlock
|
|
+ (Fi.transpose()
|
|
* (Fi - Ei_P * E.template block<ZDim, N>(ZDim * i, 0).transpose() * Fi));
|
|
|
|
// upper triangular part of the hessian
|
|
for (size_t j = i + 1; j < m; j++) { // for each camera
|
|
const MatrixZD& Fj = Fs[j];
|
|
|
|
DenseIndex aug_j = KeySlotMap.at(keys[j]);
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
|
|
// off diagonal block - store previous block
|
|
// matrixBlock = augmentedHessian(aug_i, aug_j).knownOffDiagonal();
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i, aug_j) =
|
|
augmentedHessian(aug_i, aug_j).knownOffDiagonal()
|
|
- Fi.transpose()
|
|
* (Ei_P * E.template block<ZDim, N>(ZDim * j, 0).transpose() * Fj);
|
|
}
|
|
} // end of for over cameras
|
|
|
|
augmentedHessian(M, M)(0, 0) += b.squaredNorm();
|
|
}
|
|
|
|
private:
|
|
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
|
ar & (*this);
|
|
}
|
|
};
|
|
|
|
template<class CAMERA>
|
|
const int CameraSet<CAMERA>::D;
|
|
|
|
template<class CAMERA>
|
|
const int CameraSet<CAMERA>::ZDim;
|
|
|
|
template<class CAMERA>
|
|
struct traits<CameraSet<CAMERA> > : public Testable<CameraSet<CAMERA> > {
|
|
};
|
|
|
|
template<class CAMERA>
|
|
struct traits<const CameraSet<CAMERA> > : public Testable<CameraSet<CAMERA> > {
|
|
};
|
|
|
|
} // \ namespace gtsam
|