gtsam/cpp/testPose2SLAM.cpp

203 lines
6.6 KiB
C++

/**
* @file testPose2Graph.cpp
* @authors Frank Dellaert, Viorela Ila
**/
#include <iostream>
#include <boost/shared_ptr.hpp>
#include <boost/assign/std/list.hpp>
using namespace boost;
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "NonlinearOptimizer-inl.h"
#include "FactorGraph-inl.h"
#include "Ordering.h"
#include "pose2SLAM.h"
using namespace std;
using namespace gtsam;
// common measurement covariance
static double sx=0.5, sy=0.5,st=0.1;
static Matrix covariance = Matrix_(3,3,
sx*sx, 0.0, 0.0,
0.0, sy*sy, 0.0,
0.0, 0.0, st*st
);
/* ************************************************************************* */
TEST( Pose2Graph, constructor )
{
// create a factor between unknown poses p1 and p2
Pose2 measured(2,2,M_PI_2);
Pose2Factor constraint(1,2,measured, covariance);
Pose2Graph graph;
graph.add(1,2,measured, covariance);
// get the size of the graph
size_t actual = graph.size();
// verify
size_t expected = 1;
CHECK(actual == expected);
}
/* ************************************************************************* */
TEST( Pose2Graph, linerization )
{
// create a factor between unknown poses p1 and p2
Pose2 measured(2,2,M_PI_2);
Pose2Factor constraint(1,2,measured, covariance);
Pose2Graph graph;
graph.add(1,2,measured, covariance);
// Choose a linearization point
Pose2 p1(1.1,2,M_PI_2); // robot at (1.1,2) looking towards y (ground truth is at 1,2, see testPose2)
Pose2 p2(-1,4.1,M_PI); // robot at (-1,4) looking at negative (ground truth is at 4.1,2)
Pose2Config config;
config.insert(1,p1);
config.insert(2,p2);
// Linearize
GaussianFactorGraph lfg_linearized = graph.linearize(config);
//lfg_linearized.print("lfg_actual");
// the expected linear factor
GaussianFactorGraph lfg_expected;
Matrix A1 = Matrix_(3,3,
0.0,-2.0, -4.2,
2.0, 0.0, -4.2,
0.0, 0.0,-10.0);
Matrix A2 = Matrix_(3,3,
2.0, 0.0, 0.0,
0.0, 2.0, 0.0,
0.0, 0.0, 10.0);
double sigma = 1;
Vector b = Vector_(3,-0.1/sx,0.1/sy,0.0);
lfg_expected.add("x1", A1, "x2", A2, b, sigma);
CHECK(assert_equal(lfg_expected, lfg_linearized));
}
/* ************************************************************************* */
TEST(Pose2Graph, optimize) {
// create a Pose graph with one equality constraint and one measurement
shared_ptr<Pose2Graph> fg(new Pose2Graph);
fg->addConstraint(0, Pose2(0,0,0));
fg->add(0, 1, Pose2(1,2,M_PI_2), covariance);
// Create initial config
boost::shared_ptr<Pose2Config> initial(new Pose2Config());
initial->insert(0, Pose2(0,0,0));
initial->insert(1, Pose2(0,0,0));
// Choose an ordering and optimize
shared_ptr<Ordering> ordering(new Ordering);
*ordering += "x0","x1";
typedef NonlinearOptimizer<Pose2Graph, Pose2Config> Optimizer;
Optimizer optimizer0(fg, ordering, initial);
Optimizer::verbosityLevel verbosity = Optimizer::SILENT;
//Optimizer::verbosityLevel verbosity = Optimizer::ERROR;
Optimizer optimizer = optimizer0.levenbergMarquardt(1e-15, 1e-15, verbosity);
// Check with expected config
Pose2Config expected;
expected.insert(0, Pose2(0,0,0));
expected.insert(1, Pose2(1,2,M_PI_2));
CHECK(assert_equal(expected, *optimizer.config()));
}
/* ************************************************************************* */
// test optimization with 6 poses arranged in a hexagon and a loop closure
TEST(Pose2Graph, optimizeCircle) {
// Create a hexagon of poses
Pose2Config hexagon = pose2SLAM::circle(6,1.0);
Pose2 p0 = hexagon[0], p1 = hexagon[1];
// create a Pose graph with one equality constraint and one measurement
shared_ptr<Pose2Graph> fg(new Pose2Graph);
fg->addConstraint(0, p0);
Pose2 delta = between(p0,p1);
fg->add(0, 1, delta, covariance);
fg->add(1,2, delta, covariance);
fg->add(2,3, delta, covariance);
fg->add(3,4, delta, covariance);
fg->add(4,5, delta, covariance);
fg->add(5, 0, delta, covariance);
// Create initial config
boost::shared_ptr<Pose2Config> initial(new Pose2Config());
initial->insert(0, p0);
initial->insert(1, expmap(hexagon[1],Vector_(3,-0.1, 0.1,-0.1)));
initial->insert(2, expmap(hexagon[2],Vector_(3, 0.1,-0.1, 0.1)));
initial->insert(3, expmap(hexagon[3],Vector_(3,-0.1, 0.1,-0.1)));
initial->insert(4, expmap(hexagon[4],Vector_(3, 0.1,-0.1, 0.1)));
initial->insert(5, expmap(hexagon[5],Vector_(3,-0.1, 0.1,-0.1)));
// Choose an ordering and optimize
shared_ptr<Ordering> ordering(new Ordering);
*ordering += "x0","x1","x2","x3","x4","x5";
typedef NonlinearOptimizer<Pose2Graph, Pose2Config> Optimizer;
Optimizer optimizer0(fg, ordering, initial);
Optimizer::verbosityLevel verbosity = Optimizer::SILENT;
// Optimizer::verbosityLevel verbosity = Optimizer::ERROR;
Optimizer optimizer = optimizer0.levenbergMarquardt(1e-15, 1e-15, verbosity);
Pose2Config actual = *optimizer.config();
// Check with ground truth
CHECK(assert_equal(hexagon, actual));
// Check loop closure
CHECK(assert_equal(delta,between(actual[5],actual[0])));
}
/* ************************************************************************* */
// test optimization with 6 poses arranged in a hexagon and a loop closure
TEST(Pose2Graph, findMinimumSpanningTree) {
typedef Pose2Config::Key Key;
Pose2Graph G, T, C;
Matrix cov = eye(3);
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(0.,0.,0.), cov)));
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(3), Pose2(0.,0.,0.), cov)));
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(2), Key(3), Pose2(0.,0.,0.), cov)));
PredecessorMap<Key> tree = G.findMinimumSpanningTree<Key, Pose2Factor>();
CHECK(tree[Key(1)] == Key(1));
CHECK(tree[Key(2)] == Key(1));
CHECK(tree[Key(3)] == Key(1));
}
/* ************************************************************************* */
// test optimization with 6 poses arranged in a hexagon and a loop closure
TEST(Pose2Graph, split) {
typedef Pose2Config::Key Key;
Pose2Graph G, T, C;
Matrix cov = eye(3);
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(0.,0.,0.), cov)));
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(3), Pose2(0.,0.,0.), cov)));
G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(2), Key(3), Pose2(0.,0.,0.), cov)));
PredecessorMap<Key> tree;
tree.insert(Key(1),Key(2));
tree.insert(Key(2),Key(2));
tree.insert(Key(3),Key(2));
G.split<Key, Pose2Factor>(tree, T, C);
LONGS_EQUAL(2, T.size());
LONGS_EQUAL(1, C.size());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */