/** * @file testPose2Graph.cpp * @authors Frank Dellaert, Viorela Ila **/ #include #include #include using namespace boost; using namespace boost::assign; #include #include "NonlinearOptimizer-inl.h" #include "FactorGraph-inl.h" #include "Ordering.h" #include "pose2SLAM.h" using namespace std; using namespace gtsam; // common measurement covariance static double sx=0.5, sy=0.5,st=0.1; static Matrix covariance = Matrix_(3,3, sx*sx, 0.0, 0.0, 0.0, sy*sy, 0.0, 0.0, 0.0, st*st ); /* ************************************************************************* */ TEST( Pose2Graph, constructor ) { // create a factor between unknown poses p1 and p2 Pose2 measured(2,2,M_PI_2); Pose2Factor constraint(1,2,measured, covariance); Pose2Graph graph; graph.add(1,2,measured, covariance); // get the size of the graph size_t actual = graph.size(); // verify size_t expected = 1; CHECK(actual == expected); } /* ************************************************************************* */ TEST( Pose2Graph, linerization ) { // create a factor between unknown poses p1 and p2 Pose2 measured(2,2,M_PI_2); Pose2Factor constraint(1,2,measured, covariance); Pose2Graph graph; graph.add(1,2,measured, covariance); // Choose a linearization point Pose2 p1(1.1,2,M_PI_2); // robot at (1.1,2) looking towards y (ground truth is at 1,2, see testPose2) Pose2 p2(-1,4.1,M_PI); // robot at (-1,4) looking at negative (ground truth is at 4.1,2) Pose2Config config; config.insert(1,p1); config.insert(2,p2); // Linearize GaussianFactorGraph lfg_linearized = graph.linearize(config); //lfg_linearized.print("lfg_actual"); // the expected linear factor GaussianFactorGraph lfg_expected; Matrix A1 = Matrix_(3,3, 0.0,-2.0, -4.2, 2.0, 0.0, -4.2, 0.0, 0.0,-10.0); Matrix A2 = Matrix_(3,3, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 10.0); double sigma = 1; Vector b = Vector_(3,-0.1/sx,0.1/sy,0.0); lfg_expected.add("x1", A1, "x2", A2, b, sigma); CHECK(assert_equal(lfg_expected, lfg_linearized)); } /* ************************************************************************* */ TEST(Pose2Graph, optimize) { // create a Pose graph with one equality constraint and one measurement shared_ptr fg(new Pose2Graph); fg->addConstraint(0, Pose2(0,0,0)); fg->add(0, 1, Pose2(1,2,M_PI_2), covariance); // Create initial config boost::shared_ptr initial(new Pose2Config()); initial->insert(0, Pose2(0,0,0)); initial->insert(1, Pose2(0,0,0)); // Choose an ordering and optimize shared_ptr ordering(new Ordering); *ordering += "x0","x1"; typedef NonlinearOptimizer Optimizer; Optimizer optimizer0(fg, ordering, initial); Optimizer::verbosityLevel verbosity = Optimizer::SILENT; //Optimizer::verbosityLevel verbosity = Optimizer::ERROR; Optimizer optimizer = optimizer0.levenbergMarquardt(1e-15, 1e-15, verbosity); // Check with expected config Pose2Config expected; expected.insert(0, Pose2(0,0,0)); expected.insert(1, Pose2(1,2,M_PI_2)); CHECK(assert_equal(expected, *optimizer.config())); } /* ************************************************************************* */ // test optimization with 6 poses arranged in a hexagon and a loop closure TEST(Pose2Graph, optimizeCircle) { // Create a hexagon of poses Pose2Config hexagon = pose2SLAM::circle(6,1.0); Pose2 p0 = hexagon[0], p1 = hexagon[1]; // create a Pose graph with one equality constraint and one measurement shared_ptr fg(new Pose2Graph); fg->addConstraint(0, p0); Pose2 delta = between(p0,p1); fg->add(0, 1, delta, covariance); fg->add(1,2, delta, covariance); fg->add(2,3, delta, covariance); fg->add(3,4, delta, covariance); fg->add(4,5, delta, covariance); fg->add(5, 0, delta, covariance); // Create initial config boost::shared_ptr initial(new Pose2Config()); initial->insert(0, p0); initial->insert(1, expmap(hexagon[1],Vector_(3,-0.1, 0.1,-0.1))); initial->insert(2, expmap(hexagon[2],Vector_(3, 0.1,-0.1, 0.1))); initial->insert(3, expmap(hexagon[3],Vector_(3,-0.1, 0.1,-0.1))); initial->insert(4, expmap(hexagon[4],Vector_(3, 0.1,-0.1, 0.1))); initial->insert(5, expmap(hexagon[5],Vector_(3,-0.1, 0.1,-0.1))); // Choose an ordering and optimize shared_ptr ordering(new Ordering); *ordering += "x0","x1","x2","x3","x4","x5"; typedef NonlinearOptimizer Optimizer; Optimizer optimizer0(fg, ordering, initial); Optimizer::verbosityLevel verbosity = Optimizer::SILENT; // Optimizer::verbosityLevel verbosity = Optimizer::ERROR; Optimizer optimizer = optimizer0.levenbergMarquardt(1e-15, 1e-15, verbosity); Pose2Config actual = *optimizer.config(); // Check with ground truth CHECK(assert_equal(hexagon, actual)); // Check loop closure CHECK(assert_equal(delta,between(actual[5],actual[0]))); } /* ************************************************************************* */ // test optimization with 6 poses arranged in a hexagon and a loop closure TEST(Pose2Graph, findMinimumSpanningTree) { typedef Pose2Config::Key Key; Pose2Graph G, T, C; Matrix cov = eye(3); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(0.,0.,0.), cov))); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(3), Pose2(0.,0.,0.), cov))); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(2), Key(3), Pose2(0.,0.,0.), cov))); PredecessorMap tree = G.findMinimumSpanningTree(); CHECK(tree[Key(1)] == Key(1)); CHECK(tree[Key(2)] == Key(1)); CHECK(tree[Key(3)] == Key(1)); } /* ************************************************************************* */ // test optimization with 6 poses arranged in a hexagon and a loop closure TEST(Pose2Graph, split) { typedef Pose2Config::Key Key; Pose2Graph G, T, C; Matrix cov = eye(3); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(0.,0.,0.), cov))); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(3), Pose2(0.,0.,0.), cov))); G.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(2), Key(3), Pose2(0.,0.,0.), cov))); PredecessorMap tree; tree.insert(Key(1),Key(2)); tree.insert(Key(2),Key(2)); tree.insert(Key(3),Key(2)); G.split(tree, T, C); LONGS_EQUAL(2, T.size()); LONGS_EQUAL(1, C.size()); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */