gtsam/gtsam_unstable/geometry/tests/testTriangulation.cpp

273 lines
9.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* testTriangulation.cpp
*
* Created on: July 30th, 2013
* Author: cbeall3
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <gtsam_unstable/geometry/InvDepthCamera3.h>
#include <gtsam_unstable/geometry/triangulation.h>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/make_shared.hpp>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
/* ************************************************************************* */
TEST( triangulation, twoPosesBundler) {
boost::shared_ptr<Cal3Bundler> sharedCal = //
boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
gtsam::Point3(0, 0, 1));
PinholeCamera<Cal3Bundler> level_camera(level_pose, *sharedCal);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
PinholeCamera<Cal3Bundler> level_camera_right(level_pose_right, *sharedCal);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
Point2 level_uv_right = level_camera_right.project(landmark);
vector < Pose3 > poses;
vector<Point2> measurements;
poses += level_pose, level_pose_right;
measurements += level_uv, level_uv_right;
bool optimize = true;
double rank_tol = 1e-9;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
sharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
}
/* ************************************************************************* */
TEST( triangulation, fourPoses) {
boost::shared_ptr<Cal3_S2> sharedCal = //
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
gtsam::Point3(0, 0, 1));
SimpleCamera level_camera(level_pose, *sharedCal);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
SimpleCamera level_camera_right(level_pose_right, *sharedCal);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
Point2 level_uv_right = level_camera_right.project(landmark);
vector < Pose3 > poses;
vector<Point2> measurements;
poses += level_pose, level_pose_right;
measurements += level_uv, level_uv_right;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose_top = level_pose
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
SimpleCamera camera_top(pose_top, *sharedCal);
Point2 top_uv = camera_top.project(landmark);
poses += pose_top;
measurements += top_uv + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
sharedCal, measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
sharedCal, measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
SimpleCamera camera_180(level_pose180, *sharedCal);
CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
poses += level_pose180;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationCheiralityException);
}
/* ************************************************************************* */
TEST( triangulation, fourPoses_distinct_Ks) {
Cal3_S2 K1(1500, 1200, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
gtsam::Point3(0, 0, 1));
SimpleCamera level_camera(level_pose, K1);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
Cal3_S2 K2(1600, 1300, 0, 650, 440);
SimpleCamera level_camera_right(level_pose_right, K2);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
Point2 level_uv_right = level_camera_right.project(landmark);
vector<SimpleCamera> cameras;
vector<Point2> measurements;
cameras += level_camera, level_camera_right;
measurements += level_uv, level_uv_right;
boost::optional<Point3> triangulated_landmark = triangulatePoint3(cameras,
measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements.at(0) += Point2(0.1, 0.5);
measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> triangulated_landmark_noise = //
triangulatePoint3(cameras, measurements);
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
// 3. Add a slightly rotated third camera above, again with measurement noise
Pose3 pose_top = level_pose
* Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
Cal3_S2 K3(700, 500, 0, 640, 480);
SimpleCamera camera_top(pose_top, K3);
Point2 top_uv = camera_top.project(landmark);
cameras += camera_top;
measurements += top_uv + Point2(0.1, -0.1);
boost::optional<Point3> triangulated_3cameras = triangulatePoint3(cameras,
measurements);
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
// Again with nonlinear optimization
boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
measurements, 1e-9, true);
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
// 4. Test failure: Add a 4th camera facing the wrong way
Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
Cal3_S2 K4(700, 500, 0, 640, 480);
SimpleCamera camera_180(level_pose180, K4);
CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
cameras += camera_180;
measurements += Point2(400, 400);
CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
TriangulationCheiralityException);
}
/* ************************************************************************* */
TEST( triangulation, twoIdenticalPoses) {
boost::shared_ptr<Cal3_S2> sharedCal = //
boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
gtsam::Point3(0, 0, 1));
SimpleCamera level_camera(level_pose, *sharedCal);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
vector < Pose3 > poses;
vector<Point2> measurements;
poses += level_pose, level_pose;
measurements += level_uv, level_uv;
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
TriangulationUnderconstrainedException);
}
/* ************************************************************************* *
TEST( triangulation, onePose) {
// we expect this test to fail with a TriangulationUnderconstrainedException
// because there's only one camera observation
Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
vector<Pose3> poses;
vector<Point2> measurements;
poses += Pose3();
measurements += Point2();
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
TriangulationUnderconstrainedException);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */