gtsam/gtsam_unstable/slam/ProjectionFactorRollingShut...

219 lines
8.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactorRollingShutter.h
* @brief Basic projection factor for rolling shutter cameras
* @author Yotam Stern
*/
#pragma once
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam_unstable/dllexport.h>
#include <boost/optional.hpp>
namespace gtsam {
/**
* Non-linear factor for 2D projection measurement obtained using a rolling
* shutter camera. The calibration is known here. This version takes rolling
* shutter information into account as follows: consider two consecutive poses A
* and B, and a Point2 measurement taken starting at time A using a rolling
* shutter camera. Pose A has timestamp t_A, and Pose B has timestamp t_B. The
* Point2 measurement has timestamp t_p (with t_A <= t_p <= t_B) corresponding
* to the time of exposure of the row of the image the pixel belongs to. Let us
* define the alpha = (t_p - t_A) / (t_B - t_A), we will use the pose
* interpolated between A and B by the alpha to project the corresponding
* landmark to Point2.
* @ingroup slam
*/
class GTSAM_UNSTABLE_EXPORT ProjectionFactorRollingShutter
: public NoiseModelFactorN<Pose3, Pose3, Point3> {
protected:
// Keep a copy of measurement and calibration for I/O
Point2 measured_; ///< 2D measurement
double alpha_; ///< interpolation parameter in [0,1] corresponding to the
///< point2 measurement
boost::shared_ptr<Cal3_S2> K_; ///< shared pointer to calibration object
boost::optional<Pose3>
body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default:
///< false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions
///< (default: false)
public:
/// shorthand for base class type
typedef NoiseModelFactorN<Pose3, Pose3, Point3> Base;
/// shorthand for this class
typedef ProjectionFactorRollingShutter This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor
ProjectionFactorRollingShutter()
: measured_(0, 0),
alpha_(0),
throwCheirality_(false),
verboseCheirality_(false) {}
/**
* Constructor
* @param measured is the 2-dimensional pixel location of point in the image
* (the measurement)
* @param alpha in [0,1] is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default
* identity)
*/
ProjectionFactorRollingShutter(
const Point2& measured, double alpha, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
alpha_(alpha),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(false),
verboseCheirality_(false) {}
/**
* Constructor with exception-handling flags
* @param measured is the 2-dimensional pixel location of point in the image
* (the measurement)
* @param alpha in [0,1] is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are
* rethrown
* @param verboseCheirality determines whether exceptions are printed for
* Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default
* identity)
*/
ProjectionFactorRollingShutter(
const Point2& measured, double alpha, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K, bool throwCheirality,
bool verboseCheirality,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
alpha_(alpha),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality),
verboseCheirality_(verboseCheirality) {}
/** Virtual destructor */
virtual ~ProjectionFactorRollingShutter() {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "ProjectionFactorRollingShutter, z = ";
traits<Point2>::Print(measured_);
std::cout << " rolling shutter interpolation param = " << alpha_;
if (this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This* e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && (alpha_ == e->alpha()) &&
traits<Point2>::Equals(this->measured_, e->measured_, tol) &&
this->K_->equals(*e->K_, tol) &&
(this->throwCheirality_ == e->throwCheirality_) &&
(this->verboseCheirality_ == e->verboseCheirality_) &&
((!body_P_sensor_ && !e->body_P_sensor_) ||
(body_P_sensor_ && e->body_P_sensor_ &&
body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(
const Pose3& pose_a, const Pose3& pose_b, const Point3& point,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const override;
/** return the measurement */
const Point2& measured() const { return measured_; }
/** return the calibration object */
inline const boost::shared_ptr<Cal3_S2> calibration() const { return K_; }
/** returns the rolling shutter interp param*/
inline double alpha() const { return alpha_; }
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
private:
/// Serialization function
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar& BOOST_SERIALIZATION_NVP(measured_);
ar& BOOST_SERIALIZATION_NVP(alpha_);
ar& BOOST_SERIALIZATION_NVP(K_);
ar& BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar& BOOST_SERIALIZATION_NVP(throwCheirality_);
ar& BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
/// traits
template <>
struct traits<ProjectionFactorRollingShutter>
: public Testable<ProjectionFactorRollingShutter> {};
} // namespace gtsam