gtsam/gtsam_unstable/slam/MultiProjectionFactor.h

229 lines
8.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactor.h
* @brief Basic bearing factor from 2D measurement
* @author Chris Beall
* @author Richard Roberts
* @author Frank Dellaert
* @author Alex Cunningham
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <boost/optional.hpp>
namespace gtsam {
/**
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
* i.e. the main building block for visual SLAM.
* @ingroup slam
*/
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
class MultiProjectionFactor: public NoiseModelFactor {
protected:
// Keep a copy of measurement and calibration for I/O
Vector measured_; ///< 2D measurement for each of the n views
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
typedef NoiseModelFactor Base;
/// shorthand for this class
typedef MultiProjectionFactor<POSE, LANDMARK, CALIBRATION> This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor
MultiProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {}
/**
* Constructor
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param measured is the 2n dimensional location of the n points in the n views (the measurements)
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param pointKey is the index of the landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model,
KeySet poseKeys, Key pointKey, const boost::shared_ptr<CALIBRATION>& K,
boost::optional<POSE> body_P_sensor = boost::none) :
Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor),
throwCheirality_(false), verboseCheirality_(false) {
keys_.assign(poseKeys.begin(), poseKeys.end());
keys_.push_back(pointKey);
}
/**
* Constructor with exception-handling flags
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param measured is the 2 dimensional location of point in image (the measurement)
* @param model is the standard deviation
* @param poseKey is the index of the camera
* @param pointKey is the index of the landmark
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are rethrown
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model,
KeySet poseKeys, Key pointKey, const boost::shared_ptr<CALIBRATION>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<POSE> body_P_sensor = boost::none) :
Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
/** Virtual destructor */
~MultiProjectionFactor() override {}
/// @return a deep copy of this factor
NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<NonlinearFactor>(
NonlinearFactor::shared_ptr(new This(*this))); }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "MultiProjectionFactor, z = ";
std::cout << measured_ << "measurements, z = ";
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This *e = dynamic_cast<const This*>(&p);
return e
&& Base::equals(p, tol)
//&& this->measured_.equals(e->measured_, tol)
&& this->K_->equals(*e->K_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// Evaluate error h(x)-z and optionally derivatives
Vector unwhitenedError(const Values& x, boost::optional<std::vector<Matrix>&> H = boost::none) const override {
Vector a;
return a;
// Point3 point = x.at<Point3>(*keys_.end());
//
// std::vector<KeyType>::iterator vit;
// for (vit = keys_.begin(); vit != keys_.end()-1; vit++) {
// Key key = (*vit);
// Pose3 pose = x.at<Pose3>(key);
//
// if(body_P_sensor_) {
// if(H1) {
// Matrix H0;
// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
// *H1 = *H1 * H0;
// return reprojectionError;
// } else {
// PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
// return reprojectionError;
// }
// } else {
// PinholeCamera<CALIBRATION> camera(pose, *K_);
// Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
// return reprojectionError;
// }
// }
}
Vector evaluateError(const Pose3& pose, const Point3& point,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) const {
try {
if(body_P_sensor_) {
if(H1) {
Matrix H0;
PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
*H1 = *H1 * H0;
return reprojectionError;
} else {
PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
return reprojectionError;
}
} else {
PinholeCamera<CALIBRATION> camera(pose, *K_);
Point2 reprojectionError(camera.project(point, H1, H2) - measured_);
return reprojectionError;
}
} catch( CheiralityException& e) {
if (H1) *H1 = Matrix::Zero(2,6);
if (H2) *H2 = Matrix::Zero(2,3);
if (verboseCheirality_)
std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->keys_.at(1)) <<
" moved behind camera " << DefaultKeyFormatter(this->keys_.at(0)) << std::endl;
if (throwCheirality_)
throw e;
}
return Vector::Ones(2) * 2.0 * K_->fx();
}
/** return the measurements */
const Vector& measured() const {
return measured_;
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
return K_;
}
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
};
} // \ namespace gtsam