gtsam/matlab/gtsam_examples/IMUKittiExampleSimple.m

127 lines
5.3 KiB
Matlab

%close all
%clc
import gtsam.*;
%% Read data
IMU_metadata = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu_metadata.txt'));
IMU_data = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu.txt'));
% Make text file column headers into struct fields
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
GPS_metadata = importdata(gtsam.findExampleDataFile('KittiGps_metadata.txt'));
GPS_data = importdata(gtsam.findExampleDataFile('KittiGps.txt'));
% Make text file column headers into struct fields
GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
%% Convert GPS from lat/long to meters
[ x, y, ~ ] = deg2utm( [GPS_data.Latitude], [GPS_data.Longitude] );
for i = 1:numel(x)
GPS_data(i).Position = gtsam.Point3(x(i), y(i), GPS_data(i).Altitude);
end
% % Calculate GPS sigma in meters
% [ xSig, ySig, ~ ] = deg2utm( [GPS_data.Latitude] + [GPS_data.PositionSigma], ...
% [GPS_data.Longitude] + [GPS_data.PositionSigma]);
% xSig = xSig - x;
% ySig = ySig - y;
%% Start at time of first GPS measurement
firstGPSPose = 2;
%% Get initial conditions for the estimated trajectory
currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
%% Solver object
isamParams = ISAM2Params;
isamParams.setFactorization('QR');
isamParams.setRelinearizeSkip(1);
isam = gtsam.ISAM2(isamParams);
newFactors = NonlinearFactorGraph;
newValues = Values;
%% Create initial estimate and prior on initial pose, velocity, and biases
newValues.insert(symbol('x',firstGPSPose), currentPoseGlobal);
newValues.insert(symbol('v',firstGPSPose), currentVelocityGlobal);
newValues.insert(symbol('b',1), currentBias);
sigma_init_x = noiseModel.Diagonal.Precisions([0;0;0; 1;1;1]);
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
sigma_init_b = noiseModel.Isotropic.Sigma(6, 100000.0);
newFactors.add(PriorFactorPose3(symbol('x',firstGPSPose), currentPoseGlobal, sigma_init_x));
newFactors.add(PriorFactorLieVector(symbol('v',firstGPSPose), currentVelocityGlobal, sigma_init_v));
newFactors.add(PriorFactorConstantBias(symbol('b',1), currentBias, sigma_init_b));
%% Main loop:
% (1) we read the measurements
% (2) we create the corresponding factors in the graph
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
for poseIndex = firstGPSPose:length(GPS_data)
% At each non=IMU measurement we initialize a new node in the graph
currentPoseKey = symbol('x',poseIndex);
currentVelKey = symbol('v',poseIndex);
currentBiasKey = symbol('b',1);
if poseIndex > firstGPSPose
% Summarize IMU data between the previous GPS measurement and now
IMUindices = find([IMU_data.Time] > GPS_data(poseIndex-1).Time ...
& [IMU_data.Time] <= GPS_data(poseIndex).Time);
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
for imuIndex = IMUindices
accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
deltaT = IMU_data(imuIndex).dt;
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
end
% Create IMU factor
newFactors.add(ImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey, currentSummarizedMeasurement, [0;0;-9.8], [0;0;0]));
% Create GPS factor
newFactors.add(PriorFactorPose3(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position), ...
noiseModel.Diagonal.Precisions([ zeros(3,1); 1./(GPS_data(poseIndex).PositionSigma).^2*ones(3,1) ])));
% Add initial value
newValues.insert(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position));
newValues.insert(currentVelKey, currentVelocityGlobal);
%newValues.insert(currentBiasKey, currentBias);
% Update solver
% =======================================================================
isam.update(newFactors, newValues);
newFactors = NonlinearFactorGraph;
newValues = Values;
cla;
plot3DTrajectory(isam.calculateEstimate, 'g-');
drawnow;
% =======================================================================
currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
currentBias = isam.calculateEstimate(currentBiasKey);
end
end
disp('TODO: display results')
% figure(1)
% hold on;
% plot(positions(1,:), positions(2,:), '-b');
% plot3DTrajectory(isam.calculateEstimate, 'g-');
% axis equal;
% legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')