%close all %clc import gtsam.*; %% Read data IMU_metadata = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu_metadata.txt')); IMU_data = importdata(gtsam.findExampleDataFile('KittiEquivBiasedImu.txt')); % Make text file column headers into struct fields IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2); IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2); GPS_metadata = importdata(gtsam.findExampleDataFile('KittiGps_metadata.txt')); GPS_data = importdata(gtsam.findExampleDataFile('KittiGps.txt')); % Make text file column headers into struct fields GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2); GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2); %% Convert GPS from lat/long to meters [ x, y, ~ ] = deg2utm( [GPS_data.Latitude], [GPS_data.Longitude] ); for i = 1:numel(x) GPS_data(i).Position = gtsam.Point3(x(i), y(i), GPS_data(i).Altitude); end % % Calculate GPS sigma in meters % [ xSig, ySig, ~ ] = deg2utm( [GPS_data.Latitude] + [GPS_data.PositionSigma], ... % [GPS_data.Longitude] + [GPS_data.PositionSigma]); % xSig = xSig - x; % ySig = ySig - y; %% Start at time of first GPS measurement firstGPSPose = 2; %% Get initial conditions for the estimated trajectory currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame) currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); %% Solver object isamParams = ISAM2Params; isamParams.setFactorization('QR'); isamParams.setRelinearizeSkip(1); isam = gtsam.ISAM2(isamParams); newFactors = NonlinearFactorGraph; newValues = Values; %% Create initial estimate and prior on initial pose, velocity, and biases newValues.insert(symbol('x',firstGPSPose), currentPoseGlobal); newValues.insert(symbol('v',firstGPSPose), currentVelocityGlobal); newValues.insert(symbol('b',1), currentBias); sigma_init_x = noiseModel.Diagonal.Precisions([0;0;0; 1;1;1]); sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0); sigma_init_b = noiseModel.Isotropic.Sigma(6, 100000.0); newFactors.add(PriorFactorPose3(symbol('x',firstGPSPose), currentPoseGlobal, sigma_init_x)); newFactors.add(PriorFactorLieVector(symbol('v',firstGPSPose), currentVelocityGlobal, sigma_init_v)); newFactors.add(PriorFactorConstantBias(symbol('b',1), currentBias, sigma_init_b)); %% Main loop: % (1) we read the measurements % (2) we create the corresponding factors in the graph % (3) we solve the graph to obtain and optimal estimate of robot trajectory for poseIndex = firstGPSPose:length(GPS_data) % At each non=IMU measurement we initialize a new node in the graph currentPoseKey = symbol('x',poseIndex); currentVelKey = symbol('v',poseIndex); currentBiasKey = symbol('b',1); if poseIndex > firstGPSPose % Summarize IMU data between the previous GPS measurement and now IMUindices = find([IMU_data.Time] > GPS_data(poseIndex-1).Time ... & [IMU_data.Time] <= GPS_data(poseIndex).Time); currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ... currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ... IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3)); for imuIndex = IMUindices accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ]; omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ]; deltaT = IMU_data(imuIndex).dt; currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT); end % Create IMU factor newFactors.add(ImuFactor( ... currentPoseKey-1, currentVelKey-1, ... currentPoseKey, currentVelKey, ... currentBiasKey, currentSummarizedMeasurement, [0;0;-9.8], [0;0;0])); % Create GPS factor newFactors.add(PriorFactorPose3(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position), ... noiseModel.Diagonal.Precisions([ zeros(3,1); 1./(GPS_data(poseIndex).PositionSigma).^2*ones(3,1) ]))); % Add initial value newValues.insert(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(poseIndex).Position)); newValues.insert(currentVelKey, currentVelocityGlobal); %newValues.insert(currentBiasKey, currentBias); % Update solver % ======================================================================= isam.update(newFactors, newValues); newFactors = NonlinearFactorGraph; newValues = Values; cla; plot3DTrajectory(isam.calculateEstimate, 'g-'); drawnow; % ======================================================================= currentPoseGlobal = isam.calculateEstimate(currentPoseKey); currentVelocityGlobal = isam.calculateEstimate(currentVelKey); currentBias = isam.calculateEstimate(currentBiasKey); end end disp('TODO: display results') % figure(1) % hold on; % plot(positions(1,:), positions(2,:), '-b'); % plot3DTrajectory(isam.calculateEstimate, 'g-'); % axis equal; % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')