gtsam/gtsam/navigation/tests/testCombinedImuFactor.cpp

271 lines
12 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
*/
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <list>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
)
{
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
Matrix3::Identity(), Matrix3::Identity());
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
list<double>::const_iterator itDeltaT = deltaTs.begin();
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
return result;
}
Vector3 evaluatePreintegratedMeasurementsPosition(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij;
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
}
Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaRij;
}
}
/* ************************************************************************* */
TEST( CombinedImuFactor, PreintegratedMeasurements )
{
//cout << "++++++++++++++++++++++++++++++ PreintegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
// Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
double tol = 1e-6;
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements expected1(bias, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero());
expected1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
CombinedImuFactor::CombinedPreintegratedMeasurements actual1(bias,
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6));
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expected1.deltaPij), Vector(actual1.deltaPij), tol));
EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
}
/* ************************************************************************* */
TEST( CombinedImuFactor, ErrorWithBiases )
{
//cout << "++++++++++++++++++++++++++++++ ErrorWithBiases +++++++++++++++++++++++++++++++++++++++ " << endl;
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
Vector3 v1(0.5, 0.0, 0.0);
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
Vector3 v2(0.5, 0.0, 0.0);
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
double tol = 1e-6;
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov);
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
// Expected Jacobians
Matrix H1e, H2e, H3e, H4e, H5e;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a, H6a;
(void) Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2, H1a, H2a, H3a, H4a, H5a, H6a);
EXPECT(assert_equal(H1e, H1a.topRows(9)));
EXPECT(assert_equal(H2e, H2a.topRows(9)));
EXPECT(assert_equal(H3e, H3a.topRows(9)));
EXPECT(assert_equal(H4e, H4a.topRows(9)));
EXPECT(assert_equal(H5e, H5a.topRows(9)));
}
/* ************************************************************************* */
TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
{
//cout << "++++++++++++++++++++++++++++++ FirstOrderPreIntegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
// Measurements
list<Vector3> measuredAccs, measuredOmegas;
list<double> deltaTs;
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
for(int i=1;i<100;i++)
{
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
deltaTs.push_back(0.01);
}
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements preintegrated =
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
// Compute numerical derivatives
Matrix expectedDelPdelBias = numericalDerivative11<Vector,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
Matrix expectedDelVdelBias = numericalDerivative11<Vector,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
Matrix expectedDelRdelBias = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
#include <gtsam/linear/GaussianFactorGraph.h>
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */