140 lines
4.6 KiB
C++
140 lines
4.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testSmartRangeFactor.cpp
|
|
* @brief Unit tests for SmartRangeFactor Class
|
|
* @author Frank Dellaert
|
|
* @date Nov 2013
|
|
*/
|
|
|
|
#include <gtsam_unstable/slam/SmartRangeFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
static const double sigma = 2.0;
|
|
|
|
// Test situation:
|
|
static const Point2 p(0, 10);
|
|
static const Pose2 pose1(0, 0, 0), pose2(5, 0, 0), pose3(5, 5, 0);
|
|
static const double r1 = pose1.range(p), r2 = pose2.range(p), r3 = pose3.range(
|
|
p);
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SmartRangeFactor, constructor ) {
|
|
SmartRangeFactor f1;
|
|
LONGS_EQUAL(0, f1.size())
|
|
SmartRangeFactor f2(sigma);
|
|
LONGS_EQUAL(0, f2.size())
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SmartRangeFactor, addRange ) {
|
|
SmartRangeFactor f(sigma);
|
|
f.addRange(1, 10);
|
|
f.addRange(1, 12);
|
|
LONGS_EQUAL(2, f.size())
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SmartRangeFactor, scenario ) {
|
|
DOUBLES_EQUAL(10, r1, 1e-9);
|
|
DOUBLES_EQUAL(sqrt(100.0+25.0), r2, 1e-9);
|
|
DOUBLES_EQUAL(sqrt(50.0), r3, 1e-9);
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SmartRangeFactor, unwhitenedError ) {
|
|
Values values; // all correct
|
|
values.insert(1, pose1);
|
|
values.insert(2, pose2);
|
|
values.insert(3, pose3);
|
|
|
|
SmartRangeFactor f(sigma);
|
|
f.addRange(1, r1);
|
|
|
|
// Check Jacobian for n==1
|
|
vector<Matrix> H1(1);
|
|
f.unwhitenedError(values, H1); // with H now !
|
|
CHECK(assert_equal(Matrix::Zero(3,1), H1.front()));
|
|
|
|
// Whenever there are two ranges or less, error should be zero
|
|
Vector actual1 = f.unwhitenedError(values);
|
|
EXPECT(assert_equal((Vector(1) << 0.0).finished(), actual1));
|
|
f.addRange(2, r2);
|
|
Vector actual2 = f.unwhitenedError(values);
|
|
EXPECT(assert_equal((Vector(1) << 0.0).finished(), actual2));
|
|
|
|
f.addRange(3, r3);
|
|
vector<Matrix> H(3);
|
|
Vector actual3 = f.unwhitenedError(values);
|
|
EXPECT_LONGS_EQUAL(3, f.keys().size());
|
|
EXPECT(assert_equal((Vector(1) << 0.0).finished(), actual3));
|
|
|
|
// Check keys and Jacobian
|
|
Vector actual4 = f.unwhitenedError(values, H); // with H now !
|
|
EXPECT(assert_equal((Vector(1) << 0.0).finished(), actual4));
|
|
CHECK(assert_equal((Matrix(1, 3) << 0.0,-1.0,0.0).finished(), H.front()));
|
|
CHECK(assert_equal((Matrix(1, 3) << sqrt(2.0)/2,-sqrt(2.0)/2,0.0).finished(), H.back()));
|
|
|
|
// Test clone
|
|
NonlinearFactor::shared_ptr clone = f.clone();
|
|
EXPECT_LONGS_EQUAL(3, clone->keys().size());
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
TEST( SmartRangeFactor, optimization ) {
|
|
SmartRangeFactor f(sigma);
|
|
f.addRange(1, r1);
|
|
f.addRange(2, r2);
|
|
f.addRange(3, r3);
|
|
|
|
// Create initial value for optimization
|
|
Values initial;
|
|
initial.insert(1, pose1);
|
|
initial.insert(2, pose2);
|
|
initial.insert(3, Pose2(5, 6, 0)); // does not satisfy range measurement
|
|
Vector actual5 = f.unwhitenedError(initial);
|
|
EXPECT(assert_equal((Vector(1) << sqrt(25.0+16.0)-sqrt(50.0)).finished(), actual5));
|
|
|
|
// Create Factor graph
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(f);
|
|
const noiseModel::Base::shared_ptr //
|
|
priorNoise = noiseModel::Diagonal::Sigmas(Vector3(1, 1, M_PI));
|
|
graph.push_back(PriorFactor<Pose2>(1, pose1, priorNoise));
|
|
graph.push_back(PriorFactor<Pose2>(2, pose2, priorNoise));
|
|
|
|
// Try optimizing
|
|
LevenbergMarquardtParams params;
|
|
// params.setVerbosity("ERROR");
|
|
LevenbergMarquardtOptimizer optimizer(graph, initial, params);
|
|
Values result = optimizer.optimize();
|
|
EXPECT(assert_equal(initial.at<Pose2>(1), result.at<Pose2>(1)));
|
|
EXPECT(assert_equal(initial.at<Pose2>(2), result.at<Pose2>(2)));
|
|
// only the third pose will be changed, converges on following:
|
|
EXPECT(assert_equal(Pose2(5.52159, 5.582727, 0), result.at<Pose2>(3),1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|