200 lines
7.3 KiB
C++
200 lines
7.3 KiB
C++
/*
|
|
* @file SimpleHelicopter.h
|
|
* @brief Implement SimpleHelicopter discrete dynamics model and variational integrator,
|
|
* following [Kobilarov09siggraph]
|
|
* @author Duy-Nguyen Ta
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <cmath>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Implement the Reconstruction equation: \f$ g_{k+1} = g_k \exp (h\xi_k) \f$, where
|
|
* \f$ h \f$: timestep (parameter)
|
|
* \f$ g_{k+1}, g_{k} \f$: poses at the current and the next timestep
|
|
* \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
|
|
* It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
|
|
* \f$ \xi_k \f$ as a variable. So it is a three-way factor.
|
|
* Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
|
|
* in sequential update method.
|
|
*/
|
|
class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, Vector6> {
|
|
|
|
double h_; // time step
|
|
typedef NoiseModelFactor3<Pose3, Pose3, Vector6> Base;
|
|
public:
|
|
Reconstruction(Key gKey1, Key gKey, Key xiKey, double h, double mu = 1000.0) :
|
|
Base(noiseModel::Constrained::All(6, std::abs(mu)), gKey1, gKey,
|
|
xiKey), h_(h) {
|
|
}
|
|
virtual ~Reconstruction() {}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new Reconstruction(*this))); }
|
|
|
|
/** \f$ log((g_k\exp(h\xi_k))^{-1}g_{k+1}) = 0, with optional derivatives */
|
|
Vector evaluateError(const Pose3& gk1, const Pose3& gk, const Vector6& xik,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none,
|
|
boost::optional<Matrix&> H3 = boost::none) const {
|
|
|
|
Matrix6 D_exphxi_xi;
|
|
Pose3 exphxi = Pose3::Expmap(h_ * xik, H3 ? &D_exphxi_xi : 0);
|
|
|
|
Matrix6 D_gkxi_gk, D_gkxi_exphxi;
|
|
Pose3 gkxi = gk.compose(exphxi, D_gkxi_gk, H3 ? &D_gkxi_exphxi : 0);
|
|
|
|
Matrix6 D_hx_gk1, D_hx_gkxi;
|
|
Pose3 hx = gkxi.between(gk1, (H2 || H3) ? &D_hx_gkxi : 0, H1 ? &D_hx_gk1 : 0);
|
|
|
|
Matrix6 D_log_hx;
|
|
Vector error = Pose3::Logmap(hx, D_log_hx);
|
|
|
|
if (H1) *H1 = D_log_hx * D_hx_gk1;
|
|
if (H2 || H3) {
|
|
Matrix6 D_log_gkxi = D_log_hx * D_hx_gkxi;
|
|
if (H2) *H2 = D_log_gkxi * D_gkxi_gk;
|
|
if (H3) *H3 = D_log_gkxi * D_gkxi_exphxi * D_exphxi_xi * h_;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
* Implement the Discrete Euler-Poincare' equation:
|
|
*/
|
|
class DiscreteEulerPoincareHelicopter : public NoiseModelFactor3<Vector6, Vector6, Pose3> {
|
|
|
|
double h_; /// time step
|
|
Matrix Inertia_; /// Inertia tensors Inertia = [ J 0; 0 M ]
|
|
Vector Fu_; /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed)
|
|
/// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel.
|
|
/// Fu_ encodes everything we need to know about the vehicle's dynamics.
|
|
double m_; /// mass. For gravity external force f_ext, which has a fixed formula in this case.
|
|
|
|
// TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities.
|
|
// This might be needed in control or system identification problems.
|
|
// We treat them as constant here, since the control inputs are to specify.
|
|
|
|
typedef NoiseModelFactor3<Vector6, Vector6, Pose3> Base;
|
|
|
|
public:
|
|
DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey,
|
|
double h, const Matrix& Inertia, const Vector& Fu, double m,
|
|
double mu = 1000.0) :
|
|
Base(noiseModel::Constrained::All(6, std::abs(mu)), xiKey1, xiKey_1, gKey),
|
|
h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) {
|
|
}
|
|
virtual ~DiscreteEulerPoincareHelicopter() {}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new DiscreteEulerPoincareHelicopter(*this))); }
|
|
|
|
/** DEP, with optional derivatives
|
|
* pk - pk_1 - h_*Fu_ - h_*f_ext = 0
|
|
* where pk = CT_TLN(h*xi_k)*Inertia*xi_k
|
|
* pk_1 = CT_TLN(-h*xi_k_1)*Inertia*xi_k_1
|
|
* */
|
|
Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none,
|
|
boost::optional<Matrix&> H3 = boost::none) const {
|
|
|
|
Vector muk = Inertia_*xik;
|
|
Vector muk_1 = Inertia_*xik_1;
|
|
|
|
// Apply the inverse right-trivialized tangent (derivative) map of the exponential map,
|
|
// using the trapezoidal Lie-Newmark (TLN) scheme, to a vector.
|
|
// TLN is just a first order approximation of the dExpInv_exp above, detailed in [Kobilarov09siggraph]
|
|
// C_TLN formula: I6 - 1/2 ad[xi].
|
|
Matrix D_adjThxik_muk, D_adjThxik1_muk1;
|
|
Vector pk = muk - 0.5*Pose3::adjointTranspose(h_*xik, muk, D_adjThxik_muk);
|
|
Vector pk_1 = muk_1 - 0.5*Pose3::adjointTranspose(-h_*xik_1, muk_1, D_adjThxik1_muk1);
|
|
|
|
Matrix D_gravityBody_gk;
|
|
Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_), D_gravityBody_gk, boost::none);
|
|
Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z()).finished();
|
|
|
|
Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
|
|
|
|
if (H1) {
|
|
Matrix D_pik_xi = Inertia_-0.5*(h_*D_adjThxik_muk + Pose3::adjointMap(h_*xik).transpose()*Inertia_);
|
|
*H1 = D_pik_xi;
|
|
}
|
|
|
|
if (H2) {
|
|
Matrix D_pik1_xik1 = Inertia_-0.5*(-h_*D_adjThxik1_muk1 + Pose3::adjointMap(-h_*xik_1).transpose()*Inertia_);
|
|
*H2 = -D_pik1_xik1;
|
|
}
|
|
|
|
if (H3) {
|
|
*H3 = Z_6x6;
|
|
insertSub(*H3, -h_*D_gravityBody_gk, 3, 0);
|
|
}
|
|
|
|
return hx;
|
|
}
|
|
|
|
#if 0
|
|
Vector computeError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk) const {
|
|
Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
|
|
Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
|
|
|
|
Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
|
|
Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
|
|
|
|
Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
|
|
|
|
return hx;
|
|
}
|
|
|
|
Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none,
|
|
boost::optional<Matrix&> H3 = boost::none) const {
|
|
if (H1) {
|
|
(*H1) = numericalDerivative31(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
|
),
|
|
xik, xik_1, gk, 1e-5
|
|
);
|
|
}
|
|
if (H2) {
|
|
(*H2) = numericalDerivative32(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
|
),
|
|
xik, xik_1, gk, 1e-5
|
|
);
|
|
}
|
|
if (H3) {
|
|
(*H3) = numericalDerivative33(
|
|
boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
|
|
boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
|
|
),
|
|
xik, xik_1, gk, 1e-5
|
|
);
|
|
}
|
|
|
|
return computeError(xik, xik_1, gk);
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
} /* namespace gtsam */
|